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Foreword

Welcome to math camp, the Department of Economics and Stanford University!
Our goal in math camp is to familiarize you with the mathematical concepts and notation that

you will encounter in your first year at Stanford, and presumably thereafter in your economics
career. A second (equally important) goal is to give you an opportunity to get to know Stanford
and the people you will be spending a lot of time with and collaborating with over the coming
years. These notes are related to the former objective. I will leave the latter objective to your
social chairs!

In response to feedback, we have made some small changes to math camp this year. These
changes mostly consist of reducing the coverage of material that is covered in detail in later
courses, while increasing the coverage of material that continues to challenge students in core
courses.

Designing a syllabus for a math camp is somewhat tricky. The main reasons are heterogeneity
in:

• the mathematical backgrounds of PhD students in economics1—some entering students will
have taken pure mathematics degrees in the past, while others will have taken just enough
mathematics courses to find their way here;

• what students want to do with mathematics—some students are likely to go on to study
microeconomic theory, econometric theory or conduct other very mathematically intensive
research, while other students will conduct research using other methods and only want the
bare minimum mathematics needed to get through; and

• the types of mathematics used for different areas of research—the vital mathematical tools
used by microeconomists differs from those of macroeconomists and econometricians, even
before thinking about heterogeneity within these fields.

Therefore, we are focusing on material that you will almost surely encounter in your first year of
economics and in particular on the results and techniques you will need to use in problem sets

1Moreover, there are some non-economics PhD students taking the math camp - while these notes are geared at
economics PhD students, I will keep this in mind while teaching.

1



2 0 Foreword

and exams for your core courses. Many of these are also fundamental to research in certain areas
of economics.

My standing assumption in these notes is that you have taken mathematics at the
undergraduate level up to real analysis and linear algebra but that you may be very rusty or
didn’t understand the material well in the first place. That is, I will be treating the topics we
cover as if you have seen them before but don’t understand them well, and I will put a special
emphasis on how the topics are likely to be useful to you in economics (which may be different
from the way they are taught in real analysis classes for mathematicians).

A big change I am making in response to feedback is a reduction in the emphasis on proofs
of technical results and increasing the emphasis on methods and problem-solving. We will still
cover some proofs where they are necessary to have a deep understanding of the material or
where they illustrate an interesting or generalizable proof technique. Where the proofs were
already available in older versions of the notes, I have included them here—but we will not cover
all of these in-class.

Given the focus on problem-solving, there are many problems included in these notes. I will
ask you to work on some of these in class and others I hope you will look into outside of class. I
will post solutions to the problems at the end of the math camp.

I hope these notes will serve as a reference for you as you embark on your core courses and
your career in economics. Here are some additional references you might be interested in:

• For a textbook covering the basics with an emphasis on economic applications, Angel de La
Fuente’s Mathematical Methods and Models for Economists is a good option.

• For linear algebra, an excellent reference is Linear Algebra Done Right by Sheldon Axler. It is
a good introduction to linear algebra from the perspective of linear transformations
(downplaying the role of matrices and especially determinants).

• For analysis, the classic reference is Walter Rudin’s Principles of Mathematical Analysis. An
exceptional, but very mathematically sophisticated, guide to analysis is Infinite-Dimensional
Analysis: AHitchhiker’s Guide byCharalambosAliprantis andKimBorder. It is hard to imagine
any mathematics of use in economics that is not contained in this book, although it is a very
complicated guide.

• Some other good references geared to economics are the mathematics chapters in Recursive
Methods in Economic Dynamics by Nancy Stokey, Robert Lucas and Edward Prescott, and the
appendices of the excellent Microeconomic Foundations I: Choice and Competitive Markets by
David Kreps.

• On convexity, there are several excellent textbooks by R. Tyrrell Rockafellar: Convex Analysis
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for a solid grounding and Variational Analysis (with Roger J-BWets) is the authoritative guide.
For a focus on optimization, Convex Optimization by Stephen Boyd and Lieven Vandenberghe
is also excellent.

The major sources of material in this document are as follows:

• Previous versions of math camp notes written by Adem Dugalic, Michael Pollmann, Laurence
Wong, Pete Troyan, Clayton Featherstone, Joe Romano and others,

• Linear Algebra Done Right by Sheldon Axler,

• Mathematical Methods and Models for Economists by Angel de la Fuente,

• Real Analysis with Economic Applications by Efe A. Ok,

• Introduction to Modern Economic Growth by Daron Acemoglu,

• Recursive Methods in Economic Dynamics by Nancy L. Stokey and Robert E. Lucas,

• Linear and Nonlinear Programming by David G. Luenberger and Yinyu Ye, and

• many Wikipedia articles!
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Logic and Sets

Contents

1.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Logic

Logic is one of the foundations of mathematics. Think about it logically: without choosing a
system of logic, how can we determine if some mathematical claim is true or false? You could
spend your whole life on the study of mathematical logic, but in these notes we will cover only
the very basic conventions of mathematical logic that are used regularly by economists.

The basic objects of logic are propositions.

Definition 1.1.1. A proposition is a logical statement that is either true or false.

We often use Roman capital letters 𝑃,𝑄, 𝑅 to stand for propositions.

Example. The statement
𝑃 : 3 < 5

is true.
The statement

𝑄 : 3 ≥ 5

is false.
The statement

𝑅𝑥 : 𝑥 ≥ 0

7



8 1 Logic and Sets

is true if 𝑥 is larger or equal to 0, and false if 𝑥 is less than 0. ♣

This latter example is an example of a propositional variable, whose truth depends on the
value of 𝑥 .

Definition 1.1.2. We define three common binary logical operators: ∧ (and), ∨ (or), ¬ (not).
Let

𝑅 : 𝑃 ∧𝑄 (P and Q)

𝑆 : 𝑃 ∨𝑄 (P or Q)

𝑇 : ¬𝑃 (not P),

then

• 𝑅 = 𝑃 ∧𝑄 is true if both 𝑃 and 𝑄 are true; but false if either 𝑃 or 𝑄 is false;

• 𝑆 = 𝑃 ∨𝑄 is true if either 𝑃 is true, 𝑄 is true, or both 𝑃 and 𝑄 are true; while it is false if
both 𝑃 and 𝑄 are false;

• 𝑇 = ¬𝑃 is true if 𝑃 is false, and false if 𝑃 is true.

If you have trouble remembering which of ∧ and ∨ is “and” and which is “or” it might help
you to remember that ∨ stands for the (first letter of) Latin “vel” – which means “or.” If your Latin
is a little rusty, you may think of ∧ as a capital “A” (with the horizontal bar missing), short for
“and.”

Definition 1.1.3. We say 𝑃 implies 𝑄 , or 𝑃 =⇒ 𝑄 , if 𝑄 is always true when 𝑃 is true.

Note that this definition does not put any restrictions on 𝑄 if 𝑃 is false. In this case, 𝑃 is said to
be a sufficient condition for 𝑄 , while 𝑄 is said to be a necessary condition for 𝑃 .

Definition 1.1.4. We say 𝑃 if and only if 𝑄 , or 𝑃 iff 𝑄 (note the two “f”), or 𝑃 and 𝑄 are
equivalent, or 𝑃 is equivalent to 𝑄 , or 𝑃 ⇐⇒ 𝑄 , if 𝑃 =⇒ 𝑄 and 𝑄 =⇒ 𝑃 .

In this case 𝑃 is said to be a necessary and sufficient condition for 𝑄 (and vice versa).
The following truth table summarizes these definitions:

P Q 𝑃 ∧𝑄 𝑃 ∨𝑄 ¬𝑃 𝑃 =⇒ 𝑄 𝑃 ⇐⇒ 𝑄

true true true true false true true
true false false true false false false
false true false true true true false
false false false false true true true
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Sometimes, the order of precedence is relevant. Note that typically

¬𝑃 ∧𝑄

is the same as
(¬𝑃) ∧𝑄

and NOT the same as
¬(𝑃 ∧𝑄)

so that ≠ takes highest precedence. Beyond that, in my opinion, when there is room for doubt,
it is typically better to use parentheses to clarify the order of operations rather than rely on a
mutual understanding.

Based on these definitions, we could show any number of (non-) relations, e.g.

¬(𝑃 ∧𝑄) ⇐⇒ ¬𝑃 ∨ ¬𝑄

¬(𝑃 ∨𝑄) ⇐⇒ ¬𝑃 ∧ ¬𝑄

(𝑃 ∧𝑄) ∧ 𝑅 ⇐⇒ 𝑃 ∧ (𝑄 ∧ 𝑅)

(𝑃 ∨𝑄) ∨ 𝑅 ⇐⇒ 𝑃 ∨ (𝑄 ∨ 𝑅)

𝑃 ∧𝑄 =⇒ 𝑃 ∨𝑄

Note that to show the equivalence in, e.g., the first statement, we need to show that both

¬(𝑃 ∧𝑄) =⇒ ¬𝑃 ∨ ¬𝑄

and

¬𝑃 ∨ ¬𝑄 =⇒ ¬(𝑃 ∧𝑄)

to satisfy the definition of ⇐⇒ .

Exercise 1.1. Prove the following logical formulas. (That is, show that the formulas always
evaluate to ‘true’, regardless of the truth values of 𝑃 and 𝑄).

((𝑃 =⇒ 𝑄) ∧ 𝑃) =⇒ 𝑄

((𝑃 =⇒ 𝑄) ∧ ¬𝑄) =⇒ ¬𝑃

(¬𝑄 =⇒ ¬𝑃) ⇐⇒ (𝑃 =⇒ 𝑄)

The first is called “direct proof” or modus ponens, the second is called modus tollens and is the
basis of proofs by contradiction, and the third is the basis of argument by contraposition.
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1.2 Sets

The first objects of our analysis are sets. A set should be defined precisely in terms of the Zermelo-
Fraenkel axioms, which are a list of propositions which mathematicians typically take to be true
(e.g., there exists an empty set). We will not go into the murky logical foundations of set theory.
Instead, let’s adopt the following informal definition.

Definition 1.2.1. A set is a collection of objects.

In most versions of formal set theory, these objects are also sets! Even numbers are viewed as
sets, as we will see later on.

For any set 𝐴, 𝑥 ∈ 𝐴 means that the element 𝑥 is in the set 𝐴. The empty set is denoted by ∅.
It is the unique set with no elements (as its name suggests).

Definition 1.2.2. Let 𝐴 and 𝐵 be sets.

(a) If each element of 𝐴 is also an element of 𝐵, then we say that 𝐴 is a subset of 𝐵, or write
𝐴 ⊆ 𝐵. Equivalently, we may say that 𝐵 is a superset of 𝐴, denoted by 𝐵 ⊇ 𝐴.

(b) If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, we say that the sets are equal, denoted by 𝐴 = 𝐵.

(c) We say that 𝐴 is a proper subset of 𝐵, or 𝐴 ⊂ 𝐵, if 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵.

Given two sets, we have various ways of combining them to create new sets.

Definition 1.2.3. Let 𝐴 and 𝐵 be sets. We define:

(a) set union by 𝐴 ∪ 𝐵 = {𝑥 : 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵};

(b) set intersection by 𝐴 ∩ 𝐵 = {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}. If 𝐴 ∩ 𝐵 = ∅, then 𝐴 and 𝐵 are said
to be disjoint;

(c) set minus, by 𝐴 \ 𝐵 = 𝐴 − 𝐵 = {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵};

(d) the Cartesian product 𝐴 × 𝐵 = {(𝑎, 𝑏) : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵};a and

(e) the power set of 𝐴, denoted by P(𝐴), or 2𝐴, as the set of all subsets of 𝐴, .
aFormally, we should first define ordered pairs by (𝑎, 𝑏) = {𝑎, {𝑎, 𝑏}}, but this is really pedantic.

Often, we are interested in sets that are subsets of some universal set U, which might be the
set of all real numbers, the set of all functions or the set of all three-legged chairs. With this
universe fixed, we may define the complement of a set as 𝐴𝑐 = U −𝐴, all the objects not in 𝐴.



1.2 Sets 11

Here are some basic set properties :

Theorem 1.2.4. Distributive laws:

(i) 𝐴 ∪ (𝐵 ∩𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪𝐶).

(ii) 𝐴 ∩ (𝐵 ∪𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩𝐶).

Theorem 1.2.5. De Morgan’s laws:

(i) (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 .

(ii) (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 .

Definition 1.2.6. Index families: Suppose for each 𝑖 in a nonempty set 𝐼 there corresponds
a set 𝐴𝑖 . Then we call A = {𝐴𝑖 : 𝑖 ∈ 𝐼 } an index family.

We can equivalently define set operations over index families:
⋃
𝑖∈𝐼 𝐴𝑖 ,

⋂
𝑖∈𝐼 𝐴𝑖 . De Morgan’s law

now gives (⋃𝑖∈𝐼 𝐴𝑖)𝑐 =
⋂
𝑖∈𝐼 𝐴

𝑐
𝑖 .

Although we agreed to avoid the axiomatic construction of sets, there is one famous axiom
related to index families that we should at least mention.

Definition 1.2.7 (Axiom of Choice). If {𝐴𝑖 : 𝑖 ∈ 𝐼 } is a nonempty set of nonempty sets, then
the Cartesian product

∏
𝑖∈𝐼 𝐴𝑖 is nonempty.

This axiom is somewhat controversial in mathematics: it is independent of the other more
innocuous axioms of set theory (i.e., it cannot be proven from them) and has a few unusual
implications (like the Banach-Tarski paradox). On the other hand, dropping the Axiom of
Choice brings its own problems, including making infinite-dimensional analysis much harder.
When problems in economics are modelled in infinite-dimensional space, theoretical issues
related to implications of the Axiom of Choice occasionally arise.

With sets defined, we may now also define a couple more logical operations, called
quantifiers.

Definition 1.2.8. Let 𝑃𝑥 be a propositional variable and 𝑆 a set. The existential quantifier
is the statement ∃𝑥 ∈ 𝑆, 𝑃𝑥 which is true if there exists an 𝑥 ∈ 𝑆 for which the proposition
𝑃𝑥 is true. The universal quantifier ∀𝑥 ∈ 𝑆, 𝑃𝑥 is true if for all 𝑥 ∈ 𝑆 , the proposition 𝑃𝑥
is true.

For example, let 𝑃𝑥 be the statement 𝑥 is a prime number and let 𝑆 be the set of even numbers.
Then the statement ∃𝑥 ∈ 𝑆, 𝑃𝑥 is true since 2 is an even number. The statement ∀𝑥 ∈ 𝑆, 𝑃𝑥 is false
since 4 is an even number which is not prime.
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Exercise 1.2. Prove that

(a) (𝐴 ∪ 𝐵) ×𝐶 = (𝐴 ×𝐶) ∪ (𝐵 ×𝐶), and

(b) (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷) = (𝐴 ×𝐶) ∩ (𝐵 × 𝐷).

1.3 Relations

Definition 1.3.1. A relation 𝑅 between 𝑋 and 𝑌 is a subset of 𝑋 ×𝑌 . If (𝑥,𝑦) ∈ 𝑅, we write
𝑥𝑅𝑦. If 𝑋 = 𝑌 , then the relation is said to be on 𝑋 .

Example. Let 𝑋 be the set of alternatives from which an individual can choose. A preference
relation ≿ is a relation on 𝑋 . We read 𝑥 ≿ 𝑦 as ‘𝑥 is at least as good as 𝑦’ or ‘𝑥 is weakly preferred
to 𝑦’. We define two other relations as follows:

(a) Strict preference relation: 𝑥 ≻ 𝑦 if and only if 𝑥 ≿ 𝑦 and not 𝑦 ≿ 𝑥 .

(b) Indifference relation: 𝑥 ∼ 𝑦 if and only if 𝑥 ≿ 𝑦 and 𝑦 ≿ 𝑥 .

♣

Definition 1.3.2. A relation 𝑅 on a set 𝑋 is

(a) reflexive if 𝑥𝑅𝑥 for all 𝑥 ∈ 𝑋 ;

(b) irreflexive if ¬𝑥𝑅𝑥 for all 𝑥 ∈ 𝑋 ;

(c) symmetric if 𝑥𝑅𝑦 implies 𝑦𝑅𝑥 for all 𝑥,𝑦 ∈ 𝑋 ;

(d) antisymmetric if 𝑥𝑅𝑦 and 𝑦𝑅𝑥 implies 𝑥 = 𝑦 for all 𝑥,𝑦 ∈ 𝑋

(e) asymmetric if 𝑥𝑅𝑦 implies not 𝑦𝑅𝑥 for all 𝑥,𝑦 ∈ 𝑋

(f) transitive if 𝑥𝑅𝑦 and 𝑦𝑅𝑧 imply 𝑥𝑅𝑧 for all 𝑥,𝑦, 𝑧 ∈ 𝑋 ;

(g) complete if for all 𝑥,𝑦 ∈ 𝑋 , we have 𝑥𝑅𝑦 or 𝑦𝑅𝑥 .

A reflexive, symmetric and transitive relation is an equivalence relation (e.g., set equality).
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A reflexive, antisymmetric and transitive relation is a partial order (e.g., set inclusion
⊆). If it is also complete, it is a total order (e.g., ≥ in N).

A reflexive, asymmetric and transitive relation is a strict partial order (e.g. strict
inclusion ⊂)

Definition 1.3.3. Let 𝑅 be an equivalence relation on a set 𝑋 . Then the equivalence class
of 𝑥 ∈ 𝑋 is given by

[𝑥]𝑅 = {𝑦 ∈ 𝑋 : 𝑦𝑅𝑥}.

Write 𝑋/𝑅 for the set of equivalence classes of 𝑅 in 𝑋 . It is sometimes called the quotient of
𝑋 by 𝑅.

Definition 1.3.4. A partition of a set 𝑋 is a collection P of nonempty subsets of 𝑋 such
that

(i) for all 𝑥 ∈ 𝑋 , there exists 𝐴 ∈ P such that 𝑥 ∈ 𝐴.

(ii) for all 𝐴, 𝐵 ∈ P, 𝐴 ∩ 𝐵 ≠ ∅ implies 𝐴 = 𝐵.

Theorem 1.3.5. Let 𝑅 be an equivalence relation on a set 𝑋 . Then {[𝑥]𝑅 : 𝑥 ∈ 𝑋 } is a partition
of 𝑋 .

Proof. Since𝑅 is reflexive, each element of𝑋 is in some equivalence class. Suppose [𝑥]𝑅∩[𝑦]𝑅 ≠ ∅,
so there exists an element 𝑧 ∈ [𝑥]𝑅 ∩ [𝑦]𝑅 . We need to show that [𝑥]𝑅 = [𝑦]𝑅 . Let 𝑥 ′ ∈ [𝑥]𝑅 .
This means 𝑥 ′𝑅𝑥 . Since 𝑧 ∈ [𝑥]𝑅 ∩ [𝑦]𝑅 , we can write 𝑧𝑅𝑥 and 𝑧𝑅𝑦, or by symmetry, 𝑥𝑅𝑧 and
𝑧𝑅𝑦. Using the transitivity twice, we obtain 𝑥 ′𝑅𝑦, so 𝑥 ′ ∈ [𝑦]𝑅 . This shows that [𝑥]𝑅 ⊆ [𝑦]𝑅 . In
a similar manner, we can show that [𝑦]𝑅 ⊆ [𝑥]𝑅 , so [𝑥]𝑅 = [𝑦]𝑅 . Hence, {[𝑥]𝑅 : 𝑥 ∈ 𝑋 } is a
partition of 𝑋 . □

Example. The preference relation ≿ is said to be rational if it is complete and transitive. Note
that completeness implies reflexiveness. We can then show that

(a) ≻ is irreflexive and transitive.

(b) ∼ is reflexive, symmetric, and transitive.

Hence, the indifference relation ∼ is an equivalence relation. The equivalence classes [𝑥]∼ = {𝑦 ∈
𝑋 : 𝑦 ∼ 𝑥} are often called indifference curves or indifference sets. By Theorem 6.1.6, we see that
indifference sets partition the set 𝑋 , and that indifference sets do not intersect. ♣
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Exercise 1.3 (ECON 202 - Final Exam 2015). A long-standing finding in psychology is that
individuals cannot distinguish small quantity differences and that the probability that a
difference is distinguishable depends on the ratio of the two quantities. Suppose there is some
𝛿 > 1 such that, given two quantities 𝑥 > 𝑦 > 0 of a good, the two items can be distinguished if
and only if 𝑥 > 𝛿𝑦.

Define a preference relation for a single good as follows:

• 𝑥 ≻ 𝑦 if 𝑥 > 𝛿𝑦,

• 𝑥 ⪰ 𝑦 if it is not the case that 𝑦 ≻ 𝑥 , and

• 𝑥 ∼ 𝑦 if 𝑥 ⪰ 𝑦 and 𝑦 ⪰ 𝑥 .

Prove or disprove each of the following:

(a) The relation ⪰ is complete.

(b) The relation ≻ is transitive.

(c) The relation ∼ is transitive.

(d) (𝑥 ≻ 𝑦 and 𝑦 ∼ 𝑧) =⇒ 𝑥 ⪰ 𝑧.

Exercise 1.4. Determine which of the following relations are equivalence relations and describe
their equivalence classes:

(a) 𝑥𝑅𝑦 if 𝑥 − 𝑦 is divisible by 8,

(b) 𝑥𝑅𝑦 if 𝑥 − 𝑦 is odd,

(c) 𝑥𝑅𝑦 if 𝑥 − 𝑦 is prime.

1.4 Functions

Definition 1.4.1. Let 𝑋 and 𝑌 be sets. A function between 𝑋 and 𝑌 is a nonempty relation
𝑓 ⊆ 𝑋 × 𝑌 such that if (𝑥,𝑦) ∈ 𝑓 and (𝑥,𝑦′) ∈ 𝑓 , then 𝑦 = 𝑦′. The domain and range of 𝑓
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are given by

domain 𝑓 = {𝑥 ∈ 𝑋 : there exists 𝑦 ∈ 𝑌 such that (𝑥,𝑦) ∈ 𝑓 },

range 𝑓 = {𝑦 ∈ 𝑌 : there exists 𝑥 ∈ 𝑋 such that (𝑥,𝑦) ∈ 𝑓 }.

The set 𝑌 is referred to as the codomain of 𝑓 . If the domain of 𝑓 is 𝑋 , we write 𝑓 : 𝑋 → 𝑌

and say that 𝑓 is a function from 𝑋 to 𝑌 , or that 𝑓 is a mapping from 𝑋 into 𝑌 . If (𝑥,𝑦) ∈ 𝑓 ,
we often denote 𝑦 by 𝑓 (𝑥).

Definition 1.4.2. Let 𝑓 : 𝑋 → 𝑌 . If 𝐶 ⊆ 𝑋 , then the image of 𝐶 under 𝑓 , denoted 𝑓 (𝐶), is
the set given by

𝑓 (𝐶) = {𝑓 (𝑥) ∈ 𝑌 : 𝑥 ∈ 𝐶}.

In this notation, 𝑓 (𝑋 ) ⊆ 𝑌 is the range of 𝑓 . If 𝐷 ⊆ 𝑌 , then the inverse image of 𝐷 under 𝑓 ,
denoted 𝑓 −1(𝐷), is

𝑓 −1(𝐷) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ∈ 𝐷}.

Definition 1.4.3. A function 𝑓 : 𝑋 → 𝑌 is

(a) surjective (or is said to map 𝑋 onto 𝑌 ) if the range of 𝑓 is 𝑌 .

(b) injective (or one-to-one) if for all 𝑥, 𝑥 ′ ∈ 𝑋 , 𝑓 (𝑥) = 𝑓 (𝑥 ′) implies 𝑥 = 𝑥 ′.

(c) bijective (or is a one-to-one correspondence between 𝑋 and 𝑌 ) if it is both surjective
and injective.

Theorem 1.4.4. Let 𝑓 be a function that maps 𝑋 into 𝑌 . Then we have

(a) If 𝐷 ⊆ 𝑌 , then 𝑓
(
𝑓 −1(𝐷)

)
⊆ 𝐷 ;

(b) If 𝑓 maps 𝑋 onto 𝑌 , then 𝑓
(
𝑓 −1(𝐷)

)
= 𝐷 .

(c) If 𝐶 ⊆ 𝑋 , then 𝐶 ⊆ 𝑓 −1 (𝑓 (𝐶)) ;
(d) If 𝑓 is one-to-one, then 𝐶 = 𝑓 −1 (𝑓 (𝐶)) .
(e) If {𝐶𝛼 : 𝛼 ∈ 𝐴} is a family of subsets of 𝑋 , then 𝑓 (⋃𝛼 𝐶𝛼 ) =

⋃
𝛼 𝑓 (𝐶𝛼 );

(f) If {𝐷𝛼 : 𝛼 ∈ 𝐴} is a family of subsets of 𝑌 , then 𝑓 −1 (⋃𝛼 𝐷𝛼 ) =
⋃
𝛼 𝑓

−1(𝐷𝛼 );

(g) 𝑓 −1 (⋂𝛼 𝐷𝛼 ) =
⋂
𝛼 𝑓

−1(𝐷𝛼 );
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(h) 𝑓 −1(𝐷𝑐) =
(
𝑓 −1(𝐷)

)𝑐 .
Proof. We only prove (a), (b), and (f); the others are similar. If 𝑦 ∈ 𝑓

(
𝑓 −1(𝐷)

)
, then 𝑦 = 𝑓 (𝑥) for

some 𝑥 ∈ 𝑓 −1(𝐷). This means that 𝑦 = 𝑓 (𝑥) and 𝑓 (𝑥) ∈ 𝐷 , so 𝑦 ∈ 𝐷 , which proves (a). If 𝑦 ∈ 𝐷 ,
then 𝑦 = 𝑓 (𝑥) for some 𝑥 ∈ 𝑋 , and therefore for some 𝑥 ∈ 𝑓 −1(𝐷). This means 𝑦 ∈ 𝑓

(
𝑓 −1(𝐷)

)
,

which proves (b). Finally, suppose 𝑥 ∈ 𝑓 −1 (⋃𝛼 𝐷𝛼 ). Then 𝑓 (𝑥) ∈ 𝐷𝛼 for some 𝛼 , so 𝑥 ∈ 𝑓 −1(𝐷𝛼 )
for some 𝛼 . Thus 𝑥 ∈ ⋃

𝛼 𝑓
−1(𝐷𝛼 ). Every step in this argument is reversible, establishing (f). □

Definition 1.4.5. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 . The composite of 𝑓 and 𝑔, denoted 𝑔 ◦ 𝑓 ,
is given by

𝑔 ◦ 𝑓 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 : there exists 𝑦 ∈ 𝑌 such that 𝑓 (𝑥) = 𝑦 and 𝑔(𝑦) = 𝑧}.

That is, (𝑔 ◦ 𝑓 ) (𝑥) = 𝑔(𝑓 (𝑥)).

Theorem 1.4.6. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 . We have:

(a) If 𝑓 and 𝑔 are surjective, then 𝑔 ◦ 𝑓 is surjective.

(b) If 𝑓 and 𝑔 are injective, then 𝑔 ◦ 𝑓 is injective.

(c) If 𝑓 and 𝑔 are bijective, then 𝑔 ◦ 𝑓 is bijective.

Proof. (a) Since𝑔 is surjective, for every 𝑧 ∈ 𝑍 , there exists𝑦 ∈ 𝑌 such that𝑔(𝑦) = 𝑧. Furthermore,
since 𝑓 is also surjective, there exists 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑦. But (𝑔 ◦ 𝑓 ) (𝑥) = 𝑔(𝑓 (𝑥)) =
𝑔(𝑦) = 𝑧. Thus, 𝑔 ◦ 𝑓 is surjective.

(b) Suppose (𝑔 ◦ 𝑓 ) (𝑥) = (𝑔 ◦ 𝑓 ) (𝑥 ′). This means 𝑔(𝑓 (𝑥)) = 𝑔(𝑓 (𝑥 ′)). Since 𝑔 is injective,
𝑓 (𝑥) = 𝑓 (𝑥 ′) for all 𝑓 (𝑥), 𝑓 (𝑥 ′) ∈ 𝑌 . But 𝑓 is also injective, so 𝑥 = 𝑥 ′ for all 𝑥, 𝑥 ′ ∈ 𝑋 .
Thus, 𝑔 ◦ 𝑓 is injective.

(c) Follows directly from parts (a) and (b).
□

Definition 1.4.7. Let 𝑓 : 𝑋 → 𝑌 be bijective. Then the inverse function of 𝑓 is the function
𝑓 −1 given by:

𝑓 −1 = {(𝑦, 𝑥) ∈ 𝑌 × 𝑋 : (𝑥,𝑦) ∈ 𝑓 }.
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Theorem 1.4.8. Let 𝑓 : 𝑋 → 𝑌 be bijective. Then 𝑓 −1 : 𝑌 → 𝑋 is also bijective.

Proof. Suppose 𝑓 −1(𝑦) = 𝑓 −1(𝑦′). Since 𝑓 is a function, 𝑓 (𝑓 −1(𝑦)) = 𝑓 (𝑓 −1(𝑦′)). But this means
𝑦 = 𝑦′, so 𝑓 −1 is injective. To show that 𝑓 −1 is surjective, take any 𝑥 ∈ 𝑋 . Let 𝑦 = 𝑓 (𝑥),
then 𝑥 ∈ 𝑓 −1(𝑦). Since 𝑓 −1 is a function (because 𝑓 is bijective), 𝑥 = 𝑓 −1(𝑦). Therefore, 𝑓 −1 is
surjective. Thus, 𝑓 −1 is bijective. □

Exercise 1.5. Decide whether the functions are injective, surjective or bijective. If the function
is bijective, then find the inverse.

(a) 𝑓 : R→ R≥0, 𝑓 (𝑥) = |𝑥 |

(b) 𝑔 : N→ N, 𝑔(𝑛) = 𝑛 + 1

(c) ℎ : N0 → Z, ℎ(𝑛) =

𝑛
2 , for 𝑛 even

−𝑛+1
2 , for 𝑛 odd
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2.1 Constructing the Real Numbers

So far, we have done math without defining numbers! That’s a big hole, let’s fill it now.
We take the approach summarized by Leopold Kronecker: “God made the integers, all the rest

is the work of man.” Except we will go back one step and start with the natural numbers, N.
There are many equivalent ways to define the natural numbers. The first approach is

axiomatic and due to Peano.

Definition 2.1.1. The Peano axioms of N are

(a) 0 is a natural number.

(b) Every natural number has a successor which is also a natural number.

(c) 0 is not the successor of any natural number.

(d) If the successor of 𝑥 equals the successor of 𝑦 then 𝑥 = 𝑦 (the successor function is
injective).

(e) Induction: if a statement is true of 0 and if the truth of that statement for a number implies
its truth for that number’s successor, then the statement is true for every natural number.

An alternative (arguably best) approach to defining N is set-theoretic and due to von Neumann
(you will hear more about him in ECON 203!), who defines 0 := {}, the empty set, and 𝑛 :=
𝑛 − 1 ∪ {𝑛 − 1}. This is appealing mathematically, but isn’t of much interest economically.

19
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The natural numbers are a “commutative semiring”: they are closed under addition and
multiplication, and satisfy the usual commutative/associative/distributive properties with
identities 0 and 1. They also satisfy the following “well-ordering” property with respect to the
total order ≥ on N.

Theorem 2.1.2. (Well-ordering Principle) The setN of natural numbers is well-ordered, that
is, if 𝑇 is a non-empty subset of N, then 𝑇 contains a least element.

Proof. Arguing by contradiction, assume that there exists a subset 𝑇 of N without a minimum.
Define

𝑆 = {𝑛 ∈ N | 𝑛 is a lower bound of 𝑇 }.

The set 𝑆 is nonempty since 1 is a lower bound of every subset of N. Assume that 𝑛 ∈ 𝑆 . Then
we can show that also 𝑛 + 1 ∈ 𝑆 . Indeed, since 𝑛 is a lower bound of 𝑇 , we have that 𝑛 ≤ 𝑥 for
all 𝑥 ∈ 𝑇 . But since 𝑇 does not have a minimum, we have that 𝑛 ∉ 𝑇 , implying that 𝑛 < 𝑥 for all
𝑥 ∈ 𝑇 . This implies that 𝑛 + 1 ≤ 𝑥 for all 𝑥 ∈ 𝑇 , i.e., 𝑛 + 1 is a lower bound of 𝑇 and it belongs to
𝑆 . Thus, we have shown that 1 ∈ 𝑆 , and if 𝑛 ∈ 𝑆 , then 𝑛 + 1 ∈ 𝑆 . Therefore, by induction, 𝑆 = N.

Now take any 𝑥 ∈ 𝑇 (which exists since𝑇 is nonempty). Since𝑇 ⊆ N = 𝑆 , we have that 𝑥 ∈ 𝑆 .
Therefore, by the definition of 𝑆 , 𝑥 is a lower bound of 𝑇 and since 𝑥 ∈ 𝑇 , it follows that 𝑥 is the
minimum of 𝑇 , which is a desired contradiction. □

FromN, we can construct the integersZ, by {±𝑛 : 𝑛 ∈ N}. The integers have additive inverses
(in addition to all the nice properties of N), making it a “commutative ring”.

From Z, we construct the rational numbers Q by {𝑎/𝑏 : 𝑎, 𝑏 ∈ Z, 𝑏 ≠ 0}/∼ where 𝑎/𝑏 ∼ 𝑐/𝑑
if 𝑎𝑑 = 𝑏𝑐 . We have now added multiplicative inverses (for every number except zero), which
makes Q an “ordered field”, in the sense of the following definition.

Definition 2.1.3. Afield is a set 𝐹 with two operations, called addition andmultiplication,
which satisfy the following “field axioms” for all 𝑥,𝑦, 𝑧 ∈ 𝐹 :

(A) Axioms for addition:

(A1) Closure of addition: 𝑥 + 𝑦 ∈ 𝐹 .

(A2) Commutative law for addition: 𝑥 + 𝑦 = 𝑦 + 𝑥 .

(A3) Associative law for addition: 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧.

(A4) Existence of additive identity: there exists 0 ∈ 𝐹 such that 𝑥 + 0 = 𝑥 .

(A5) Existence of additive inverse: there exists −𝑥 ∈ 𝐹 such that 𝑥 + (−𝑥) = 0.
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(M) Axioms for multiplication:

(M1) Closure of multiplication: 𝑥𝑦 ∈ 𝐹 .

(M2) Commutative law for multiplication: 𝑥𝑦 = 𝑦𝑥 .

(M3) Associative law for multiplication: 𝑥 (𝑦𝑧) = (𝑥𝑦)𝑧.

(M4) Existence of multiplicative identity: there exists 1 ≠ 0 in 𝐹 such that 𝑥 · 1 = 𝑥 .

(M5) Existence of multiplicative inverse: if 𝑥 ≠ 0, then there exists 𝑥−1 ∈ 𝐹 such that
𝑥 · 𝑥−1 = 1.

(D) Distributive law: 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧.

An ordered field is a field 𝐹 in which an order, denoted by <, is defined such that the
following “order axioms” are satisfied for all 𝑥,𝑦, 𝑧 ∈ 𝐹 :

(O1) Trichotomy law: one and only one of the statements 𝑥 = 𝑦, 𝑥 > 𝑦, or 𝑥 < 𝑦 is true.

(O2) If 𝑥 < 𝑦 and 𝑦 < 𝑧, then 𝑥 < 𝑧.

(O3) If 𝑥 < 𝑦, then 𝑥 + 𝑧 < 𝑦 + 𝑧.

(O4) If 𝑥 > 0 and 𝑦 > 0, then 𝑥𝑦 > 0.

So, with all these nice properties, what are the rational numbers missing? A sense of
completeness with respect to the following operator.

Definition 2.1.4. Let 𝐹 be an ordered field and 𝑆 ⊆ 𝐹 .

(a) If there exists𝑚 ∈ 𝐹 such that𝑚 ≥ 𝑠 for all 𝑠 ∈ 𝑆 , then 𝑆 is bounded above and𝑚 is an
upper bound for 𝑆 .

(b) If𝑚 is an upper bound for 𝑆 and𝑚 ∈ 𝑆 , then𝑚 is themaximum of 𝑆 , written𝑚 = max 𝑆 .

(c) If𝑚 is an upper bound for 𝑆 and for all𝑚′ < 𝑚, there exists 𝑠′ ∈ 𝑆 such that 𝑠′ > 𝑚′, then
𝑚 is the supremum or least upper bound of 𝑆 , written𝑚 = sup 𝑆 .

The lower bound, minimum and infimum (inf 𝑆) are defined analogously.

The set of real numbers R is obtained as the (equivalence classes of) partitions of the rationals
into Dedekind cuts: two nonempty subsets 𝐴 and 𝐴𝑐 such that 𝐴 is closed downwards (𝑥 < 𝑦

and 𝑦 ∈ 𝐴 implies 𝑥 ∈ 𝐴) and 𝐴 does not have a maximum. For example,
√

2 may be defined by
the Dedekind cut with 𝐴 = {𝑥 ∈ Q : 𝑥 < 0 or 𝑥2 < 2}. This gives the following.
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Theorem 2.1.5. The set of real numbers R is a complete ordered field. That is, in addition
to the field axioms and the order axioms, R also satisfies the completeness axiom:

Every nonempty subset 𝑆 of R that is bounded above has a least upper bound. That is,
sup 𝑆 exists and is a real number.

An interesting fact that wewill not prove (or even formally define) is thatN, Z,Q andR are the
canonical examples of each of the algebraic structures we described (i.e., commutative semiring,
commutative ring, ordered field and complete ordered field), so that any non-trivial examples of
such algebraic structures contains a copy of these canonical examples inside them.

For some applications, R is still not big enough. For example, not all polynomials with real
(or even integer) coefficients have solutions over the field R. To overcome this problem, we can
add an imaginary unit 𝑖 defined by 𝑖2 = −1 and let C = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ R}. A downside is that in
doing so, we lose the ordered property of the field: C is just a complete field.

Exercise 2.1. Define the absolute value function | · | : R→ R by

|𝑥 | =

𝑥 if 𝑥 ≥ 0,

−𝑥 if 𝑥 < 0.
.

Prove that |𝑥1 + 𝑥2 | ≤ |𝑥1 | + |𝑥2 | and that

|𝑥1 + 𝑥2 + ... + 𝑥𝑛 | ≤ |𝑥1 | + |𝑥2 | + ... + |𝑥𝑛 |

for any 𝑛 ∈ N and 𝑥1, 𝑥2, ..., 𝑥𝑛 ∈ R.

Exercise 2.2. Let 𝑋,𝑌 ⊆ R𝑛 and 𝑔 : 𝑋 × 𝑌 → R. Show that

sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑔(𝑥,𝑦) ≤ inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝑔(𝑥,𝑦) .

2.2 Properties of Real Numbers
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Theorem 2.2.1. Suppose 𝐴 and 𝐵 are nonempty subsets of R. Let

𝐶 = {𝑥 + 𝑦 : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵}.

If 𝐴 and 𝐵 have suprema, then 𝐶 has a supremum and

sup𝐶 = sup𝐴 + sup𝐵.

Proof. Let 𝑎 = sup𝐴 and 𝑏 = sup𝐵. For any 𝑧 ∈ 𝐶 , there exists 𝑥 ∈ 𝐴 and𝑦 ∈ 𝐵 such that 𝑧 = 𝑥 +𝑦.
Thus, 𝑧 = 𝑥 +𝑦 ≤ 𝑎 +𝑏, so 𝑎 +𝑏 is an upper bound for𝐶 . By the completeness axiom, sup𝐶 exists
and is a real number. Let 𝑐 = sup𝐶 . Since 𝑐 is the least upper bound, we have 𝑐 ≤ 𝑎 + 𝑏.

Now suppose 𝑎 + 𝑏 > 𝑐 . This means 𝑎 + 𝑏 − 𝑐 > 0. Let

𝜀 =
𝑎 + 𝑏 − 𝑐

2
> 0.

Since 𝑎 is supremum of 𝐴, 𝑎 − 𝜀 is not an upper bound, and there exists 𝑥 ∈ 𝐴 such that 𝑥 > 𝑎 − 𝜀.
Similarly, there exists 𝑦 ∈ 𝐵 such that 𝑦 > 𝑏 − 𝜀. It follows that

𝑎 + 𝑏 ≥ 𝑥 + 𝑦 > 𝑎 + 𝑏 − 2𝜀 = 𝑎 + 𝑏 − 2
(
𝑎 + 𝑏 − 𝑐

2

)
= 𝑐.

Thus, we have found 𝑧 = 𝑥 + 𝑦 that is greater than 𝑐 , a contradiction. Therefore, 𝑎 + 𝑏 ≤ 𝑐 , and
hence, 𝑐 = 𝑎 + 𝑏. □

Theorem 2.2.2. N is unbounded above in R.

Proof. Suppose N is bounded above. Then by the completeness axiom, supN exists and is in R.
Let𝑚 = supN. Since𝑚 is the least upper bound,𝑚 − 1 is not an upper bound for N. Thus, there
exists 𝑛 ∈ N such that 𝑛 > 𝑚− 1. But then 𝑛 + 1 > 𝑚, and since 𝑛 + 1 ∈ N, this contradicts𝑚 being
an upper bound for N. Thus, N is unbounded above. □

Theorem 2.2.3. The following statements are equivalent:

(a) N is unbounded above in R.

(b) For each 𝑧 ∈ R, there exists 𝑛 ∈ N such that 𝑛 > 𝑧.

(c) For each 𝑥 > 0 and for each 𝑦 ∈ R, there exists 𝑛 ∈ N such that 𝑛𝑥 > 𝑦.

(d) For each 𝑥 > 0, there exists 𝑛 ∈ N such that 0 < 1/𝑛 < 𝑥 .
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Proof. Suppose that (a) is true, but (b) does not hold. That is, suppose there exists 𝑧 ∈ R such that
𝑛 ≤ 𝑧 for all 𝑛 ∈ N. But this means N is bounded above, which contradicts (a). Thus, (a) implies
(b).

Suppose that (b) is true and let 𝑧 = 𝑦/𝑥 . Then there exists 𝑛 ∈ N such that 𝑛 > 𝑦/𝑥 , so 𝑛𝑥 > 𝑦.
Thus, (b) implies (c).

Suppose that (c) is true and let 𝑦 = 1. Then there exists 𝑛 ∈ N such that 𝑛𝑥 > 1, so 1/𝑛 < 𝑥 .
Since 𝑛 ∈ N, 1/𝑛 > 0. Thus, (c) implies (d).

Finally, suppose that (d) is true, but (a) does not hold. That is, there exists𝑚 ∈ R such that
𝑛 < 𝑚 for all 𝑛 ∈ N. But this means 1/𝑛 > 1/𝑚 for all 𝑛 ∈ N, which contradicts (d) with 𝑥 = 1/𝑚.
Thus, (d) implies (a). □

Lemma 2.2.4. If 𝑥 ≥ 0, then there exists 𝑛 ∈ N such that 𝑛 − 1 ≤ 𝑥 < 𝑛.

Proof. Let 𝑇 = {𝑛 ∈ N : 𝑛 > 𝑥}. By Theorem 2.2.3b, 𝑇 is nonempty. Since 𝑇 ⊆ N, 𝑇 has a least
element by the well-ordering principle. Let𝑚 = min𝑇 . Since𝑚 is the minimum,𝑚 − 1 ∉ 𝑇 . Thus,
𝑚 − 1 ≤ 𝑥 < 𝑚. □

Theorem 2.2.5. Let 𝑥,𝑦 ∈ R such that 𝑥 < 𝑦. Then there exists 𝑟 ∈ Q such that 𝑥 < 𝑟 < 𝑦.

This theorem is often summarized as “the rationals are dense in the reals”.

Proof. Suppose 𝑥 ≥ 0. By Theorem 2.2.3d, there exists 𝑛 ∈ N such that 1/𝑛 < 𝑦 − 𝑥 . Thus,
𝑛𝑥 + 1 < 𝑛𝑦. By Lemma 2.2.4, there exists 𝑚 ∈ N such that 𝑚 − 1 ≤ 𝑛𝑥 < 𝑚. This implies
𝑚 ≤ 𝑛𝑥 + 1. But 𝑛𝑥 + 1 < 𝑛𝑦, so 𝑚 < 𝑛𝑦. Thus we have 𝑛𝑥 < 𝑚 < 𝑛𝑦, or, what is the same,
𝑥 < 𝑚/𝑛 < 𝑦.

Now suppose 𝑥 < 0 and 𝑦 > 0. Combining these inequalities give 𝑥 < 0 < 𝑦.
Finally, suppose 𝑥 < 0 and 𝑦 ≤ 0. That is, 𝑥 < 𝑦 ≤ 0, which means 0 ≤ −𝑦 < −𝑥 . So by the

first part of the proof, there exists 𝑟 ∈ Q such that −𝑦 < 𝑟 < −𝑥 . Thus, 𝑥 < −𝑟 < 𝑦. □

Lemma 2.2.6. Let 𝑥 be a nonzero rational number and 𝑦 be irrational. Then 𝑥𝑦 is irrational.

Proof. Since 𝑥 is rational, we can write 𝑥 =𝑚/𝑛 for some nonzero integers𝑚 and 𝑛. Now suppose
that 𝑥𝑦 is rational. Then we can write 𝑥𝑦 = 𝑝/𝑞 for some 𝑝, 𝑞 ∈ Z. It follows that

𝑦 =
𝑥𝑦

𝑥
=
𝑝/𝑞
𝑚/𝑛 =

𝑝𝑛

𝑞𝑚
,

so 𝑦 would also be rational, a contradiction. Thus, 𝑥𝑦 is irrational. □
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Theorem 2.2.7. Let 𝑥,𝑦 ∈ R and 𝑥 < 𝑦. Then there exists an irrational number 𝑤 such that
𝑥 < 𝑤 < 𝑦.

That is, the irrationals are also dense in the reals!

Proof. By Theorem 2.2.5, we can obtain a rational number 𝑟 ≠ 0 such that

𝑥
√

2
< 𝑟 <

𝑦
√

2
.

It follows that 𝑥 < 𝑟
√

2 < 𝑦, where𝑤 = 𝑟
√

2 is irrational by Lemma 2.2.6. □

Exercise 2.3. For each 𝑛 ∈ N, let 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛]. Suppose that 𝐼𝑛+1 ⊆ 𝐼𝑛 for each 𝑛 ∈ N. Show
that

⋂∞
𝑛=1 𝐼𝑛 ≠ ∅.

Now suppose that 𝐼𝑛 =
(
− 1
𝑛
, 1
𝑛

)
. Show that

⋂∞
𝑛=1 𝐼𝑛 = {0}

2.3 Infinities

Definition 2.3.1. Let 𝑆 and 𝑇 be sets. We say:

(a) 𝑆 and 𝑇 are equipotent or have equal cardinality, denoted 𝑆 ∼ 𝑇 or |𝑆 | = |𝑇 |, if there
exists a bijection from 𝑆 to 𝑇 , and

(b) 𝑆 has cardinality less than 𝑇 , |𝑆 | ≤ |𝑇 |, if there exists an injective function from 𝑆 to 𝑇 .

These two definitions are consistent by the following important theorem.

Theorem 2.3.2 (Cantor-Schröder-Bernstein Theorem). Suppose there exists injective
functions 𝑓 : 𝑆 → 𝑇 and 𝑔 : 𝑇 → 𝑆 . Then, there exists a bijective function ℎ : 𝑆 → 𝑇 .

We also have the following natural results about the cardinality of sets.

Theorem 2.3.3. Let 𝑆 , 𝑇 , and 𝑈 be sets. Then the following properties hold.

(a) If 𝑆 ⊆ 𝑇 , then |𝑆 | ≤ |𝑇 |.

(b) |𝑆 | = |𝑆 |.

(c) If |𝑆 | ≤ |𝑇 | and |𝑇 | ≤ |𝑈 |, then |𝑆 | ≤ |𝑈 |.
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(d) If𝑚,𝑛 ∈ N and𝑚 ≤ 𝑛, then |{1, 2, ...,𝑚}| ≤ |{1, 2, ..., 𝑛}|.

(e) If𝑚 ∈ N, then |{1, 2, ...,𝑚}| < |N| and |{1, 2, ...,𝑚}| < |R|.

Proof. (a) The identity function on 𝑆 is an injection from 𝑆 into 𝑇 . Thus, |𝑆 | ≤ |𝑇 |.

(b) The identity function on 𝑆 is a bijection from 𝑆 onto itself. Thus, |𝑆 | = |𝑆 |.

(c) Suppose |𝑆 | ≤ |𝑇 | and |𝑇 | ≤ |𝑈 |. This means there exist injections 𝑓 : 𝑆 → 𝑇 and 𝑔 : 𝑇 → 𝑈 .
Since the composite function of two injections is injective, 𝑔 ◦ 𝑓 : 𝑆 → 𝑈 is also injective.
Thus, |𝑆 | ≤ |𝑈 |.

(d) The identity mapping 𝑖 ↦→ 𝑖 is an injection.

(e) If 𝑆 is finite, then clearly there exists an injection from 𝑆 into N. It is not difficult to see that
we cannot find a surjection from 𝑆 onto N, which is infinite. Thus, |𝑆 | < ℵ0.

□

Definition 2.3.4. Let 𝑆 be a set and write 𝐼𝑛 = {1, 2, ..., 𝑛}. We say

(a) 𝑆 is finite if 𝑆 = ∅ or 𝐼𝑛 ∼ 𝑆 for some 𝑛 ≥ 1 and say its cardinality |𝑆 | is 𝑛.

(b) 𝑆 is infinite if it is not finite.

(c) 𝑆 is countably infinite if N ∼ 𝑆 .

(d) 𝑆 is countable if it is finite or countably infinite.

(e) 𝑆 is uncountable if it is not countable.

The cardinality of N is denoted by ℵ0 and the cardinality of R is denoted by 𝔠.

Theorem 2.3.5. Z is countably infinite.

Proof. Define 𝑓 : N→ Z by

𝑓 (𝑛) =
{

(𝑛 − 1)/2 if 𝑛 is odd,
−𝑛/2 if 𝑛 is even.

It is not difficult to see that 𝑓 is bijective. Thus, N ∼ Z, so Z is countably infinite. □
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Theorem 2.3.6. Every subset of a countable set is countable.

Proof. Let 𝑆 be a countable set and let𝑇 ⊆ 𝑆 . If𝑇 is finite, there is nothing to prove. Suppose𝑇 is
infinite. This implies that 𝑆 is countably infinite. Since N ∼ 𝑆 , we can write the elements of 𝑆 as
𝑥1, 𝑥2, . . .. Now define

𝐴 = {𝑛 ∈ N : 𝑥𝑛 ∈ 𝑇 }.

Let 𝑛1 be the smallest element in 𝐴. Having chosen 𝑛1, 𝑛2, . . . , 𝑛𝑘−1, let 𝑛𝑘 be the smallest element
in 𝐴 greater than 𝑛𝑘−1. Then the function 𝑓 : N→ 𝑇 defined by 𝑓 (𝑘) = 𝑥𝑛𝑘 is a bijection. Hence,
𝑇 is countably infinite. □

Theorem 2.3.7. Let S be a nonempty set. Then the following are equivalent:

(a) 𝑆 is countable.

(b) There exists an injection 𝑓 : 𝑆 → N.

(c) There exists a surjection 𝑔 : N→ 𝑆 .

Proof. Suppose S is countable. Then there exists a bijection ℎ : 𝐽 → 𝑆 , where 𝐽 = 𝐼𝑛 for some
𝑛 ∈ N if 𝑆 is finite and 𝐽 = N if 𝑆 is infinite. In either case, ℎ−1 is at least an injection from 𝑆 to N.
Thus, (a) implies (b).

Suppose there exists an injection 𝑓 : 𝑆 → N. Then 𝑓 is a bijection from 𝑆 onto 𝑓 (𝑆), so 𝑓 −1 is
a bijection from 𝑓 (𝑆) onto 𝑆 . Let 𝑝 be any fixed member of 𝑆 . We define ℎ : N→ 𝑆 by

ℎ(𝑛) =
{
𝑓 −1(𝑛), if 𝑛 ∈ 𝑓 (𝑆),
𝑝, if 𝑛 ∉ 𝑓 (𝑆),

which is a surjection. Thus, (b) implies (c).
Finally, suppose there exists a surjection 𝑔 : N→ 𝑆 . Define ℎ : 𝑆 → N by

ℎ(𝑠) = the smallest 𝑛 ∈ N such that 𝑔(𝑛) = 𝑠 ,

which is a bijection from 𝑆 onto ℎ(𝑆). Since ℎ(𝑆) ⊆ N, ℎ(𝑆) is countable. But ℎ(𝑆) ∼ 𝑆 , so 𝑆 is also
countable. Thus, (c) implies (a). □

Theorem 2.3.8. N × N is countable.

Proof. By Theorem 9.3.11, it suffices to show that there is an injection from N × N to N. Let 𝑓 be
defined as

𝑓 (𝑚,𝑛) = 2𝑚3𝑛 .
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To see that 𝑓 is injective, suppose 2𝑚3𝑛 = 2𝑝3𝑞 . If𝑚 < 𝑝 , then 3𝑛 = 2𝑝−𝑚3𝑞 , contradicting the fact
that 3𝑛 is odd for all 𝑛. We arrive at a similar contradiction if𝑚 > 𝑝 , so we must have𝑚 = 𝑝 . This
implies 3𝑛 = 3𝑞 . Hence, 𝑛 = 𝑞. □

Theorem 2.3.9. A countable union of countable sets is countable.

Proof. Let {𝐴 𝑗 } 𝑗∈ 𝐽 be an indexed family of countable sets, where the index 𝐽 is countable. Since
empty sets contribute nothing to the union, we may assume that all the sets are nonempty. Since
each𝐴 𝑗 is a countable set, there exists, for each 𝑗 , a surjection 𝑓𝑗 : N→ 𝐴 𝑗 . Similarly, there exists
a surjection 𝑔 : N→ 𝐽 . Now, define

ℎ : N × N→
⋃
𝑗∈ 𝐽

𝐴 𝑗

by the equation
ℎ(𝑘,𝑚) = 𝑓𝑔 (𝑘 ) (𝑚).

It is not difficult to see that ℎ is surjective. Since there exists a bijection between N×N and N, the
countability of the union follows. □

Theorem 2.3.10. Q is countable.

Proof. Denote the set of positive rationals and negative rationals by Q+ and Q− , respectively.
Consider first Q+. Any member of Q+ can be written uniquely as𝑚/𝑛, where𝑚,𝑛 ∈ N, 𝑛 ≠ 0, and
𝑚 and 𝑛 have no common prime divisors. Define 𝑓 : Q+ → N by:

𝑓 (𝑚/𝑛) = 2𝑚3𝑛 .

As shown previously, 𝑓 is injective, so Q+ is countable. The function 𝑔 : Q+ → Q− defined by
𝑔(𝑟 ) = −𝑟 is clearly bijective. Thus, Q+ ∼ Q− , so Q− is countable. Since Q = Q+ ∪ {0} ∪ Q− , Q is
countable. □

Theorem 2.3.11 (Cantor). R is uncountable.

Proof. Since every subset of a countable set is countable, it is enough for us to prove that a
subset 𝐽 = (0, 1) of R is uncountable. Suppose 𝐽 is countable, then we could list its members as
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𝑥1, 𝑥2, 𝑥3, . . .. Since each element of 𝐽 has an infinite decimal expansion, we can write:

𝑥1 = 0.𝑎11𝑎12𝑎13 . . .

𝑥2 = 0.𝑎21𝑎22𝑎23 . . .

𝑥3 = 0.𝑎31𝑎32𝑎33 . . .

...

where each 𝑎𝑖 𝑗 ∈ {0, 1, ..., 9}. We now construct a real number 𝑦 = 0.𝑏1𝑏2𝑏3... by defining

𝑏𝑛 =

{
2, if 𝑎𝑛𝑛 ≠ 2,
3, if 𝑎𝑛𝑛 = 2.

Clearly, 𝑦 ∈ (0, 1). However, 𝑦 is not one of the numbers 𝑥𝑛 , since it differs from 𝑥𝑛 in the 𝑛th
decimal place. This contradicts our assumption that 𝐽 is countable, so 𝐽 is uncountable. □

Corollary 2.3.12. The set of irrational numbers is uncountable.

Proof. Since R is uncountable, Q is countable, and R is the union of the rationals and irrationals,
it follows immediately that the set of irrational numbers is uncountable. □

Theorem 2.3.13. ℵ0 < 𝔠.

Proof. Since N ⊆ R, we have ℵ0 ≤ 𝔠. In fact, since N is countable and R is uncountable, N and R
cannot be equipotent. Hence, we have ℵ0 < 𝔠. □

Exercise 2.4. Let 𝑋 be a set and 𝑓 : 𝑋 → 2𝑋 . Show that 𝑓 is not surjective.

Exercise 2.5. Let 𝑋 = R2 and define a relation on 𝑋 by (𝑥1, 𝑦1) ⪰ (𝑥2, 𝑦2) if 𝑥1 > 𝑥2 or 𝑥1 = 𝑥2

and 𝑦1 ≥ 𝑦2.

(a) Show that 𝑋 is a complete and transitive preference relation.

(b) Now show that there exists no function𝑢 : 𝑋 → R such that 𝑥 ⪰ 𝑦 if and only if𝑢 (𝑥) ≥ 𝑢 (𝑦).

Repeat the above exercises for the relation defined by (𝑥1, 𝑦1) ⪰ (𝑥2, 𝑦2) if and only if either
min{𝑥1, 𝑦1} > min{𝑥2, 𝑦2} or min{𝑥1, 𝑦1} = min{𝑥2, 𝑦2} and 𝑥1 + 𝑦1 ≥ 𝑥2 + 𝑦2.
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3.1 Vectors

A vector is basically a list of numbers which can be added together. A formal definition is below.

Definition 3.1.1. A vector space (or linear space) over the field 𝐾 is a set 𝑉 of vectors
equipped with two operations, vector addition ("+") and scalar multiplication such that:

• Closure: For 𝑎 ∈ 𝐾 , x, y ∈ 𝑉 , x + y ∈ 𝑉 and 𝑎x ∈ 𝑉 ;

• Commutativity of addition: For x, y ∈ 𝑉 , x + y = y + x;

• Distributivity of addition: For x, y, z ∈ 𝑉 , (x + y) + z = x + (y + z);

• Additive identity: There is a vector 0 ∈ 𝑉 such that for any x ∈ 𝑉 , x + 0 = x;

• Additive inverse: For any x ∈ 𝑉 , x + (−1)x = 0;

• Distributivity of scalar multiplication: For 𝑎, 𝑏 ∈ 𝐾 , x ∈ 𝑉 , 𝑎(𝑏x) = (𝑎𝑏)x;

• Identity for scalar multiplication: For x ∈ 𝑉 , 1x = x;

• Distributive laws: For 𝑎, 𝑏 ∈ 𝐾 , x, y ∈ 𝑉 , 𝑎(x+y) = (𝑎x) + (𝑎y) and (𝑎 +𝑏)x = (𝑎x) + (𝑏x).

Example. Q𝑛 , R𝑛 , C𝑛 for 𝑛 ∈ {1, 2, ...}, equipped with usual notions of vector addition and scalar
multiplication, is a vector space over the fields Q, R and C respectively. ♣

33



34 3 Linear Algebra

Example. The set of all bounded functions 𝐵(𝑋 ) from a set 𝑋 to a field 𝐾 is also a vector space,
where the sum of two functions 𝑓 and 𝑔 is given by (𝑓 +𝑔) (𝑥) = 𝑓 (𝑥) +𝑔(𝑥) and (𝑐 𝑓 ) (𝑥) = 𝑐 𝑓 (𝑥).
So is the set of all continuous function 𝐶 (𝑋 ) and the set of all 𝑘-times differentiable functions
𝐶𝑘 (𝑋 ) (assuming 𝑋 is an open set so that the derivative is well-defined: we will come back to
these definitions later on!). ♣

Definition 3.1.2. A linear combination of x1, ..., x𝑚 ∈ 𝑉 is any sum of scalar multiples of
vectors of the form 𝑎1x1 + ... + 𝑎𝑚x𝑚 , 𝑎𝑖 ∈ 𝐾 , x𝑖 ∈ 𝑉 .

Definition 3.1.3. A linear subspace (or vector subspace) 𝑀 of 𝑉 is a subset of 𝑉 that is
closed under linear combinations. A linear subspace of a vector space is a vector space in its
own right.

Example. {0} is a linear subspace of R. For any 𝑥 ∈ R𝑛 , {𝑦 : 𝑦 = 𝛼𝑥 for some 𝛼 ∈ R} is a linear
subspace of R𝑛 . ♣

Definition 3.1.4. Let 𝐸 ⊆ 𝑉 . The span of 𝐸, denoted span𝐸 is the set of all finite linear
combinations from 𝐸. That is

span𝐸 = {
𝑚∑︁
𝑖=1

𝑎𝑖x𝑖 : 𝑎𝑖 ∈ 𝐾, x𝑖 ∈ 𝐸,𝑚 ∈ N}

Definition 3.1.5. A set 𝐸 of vectors is linearly dependent if there are distinct vectors
x1, ..., x𝑚 ∈ 𝐸 and nonzero scalars 𝑎1, ..., 𝑎𝑚 ∈ 𝐾 such

∑𝑚
𝑖=1 𝑎𝑖x𝑖 = 0. The set of vectors is

linearly independent if it is not dependent. That is, 𝐸 is independent if for every set
x1, ..., x𝑚 of distinct vectors in 𝐸,

∑𝑚
𝑖=1 𝑎𝑖x𝑖 = 0 implies 𝑎1 = ... = 𝑎𝑚 = 0.

Note that the set {0} containing only the zero vector is linearly dependent according to this
definition (as is any set containing the zero vector).

Theorem 3.1.6. (Uniqueness of linear combinations) If 𝐸 is a linearly independent set of vectors
and z ∈ span𝐸, then z is a unique linear combination of elements of 𝐸.

Proof. If z = 0, the conclusion follows by definition of independence. If z ≠ 0, suppose that
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z =

𝑚∑︁
𝑖=1

𝑎𝑖x𝑖 =
𝑛∑︁
𝑗=1

𝑏 𝑗y𝑗

where x𝑖s are distinct elements of 𝐸 and y𝑗 s are distinct elements of 𝐸 (but may overlap with the
x𝑖s), and 𝑎𝑖 , 𝑏 𝑗 ≠ 0 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛. Enumerate 𝐴 = {x𝑖 : 𝑖 = 1, ...,𝑚} ∪ {y𝑗 : 𝑗 = 1, ..., 𝑛}
as 𝐴 = {z𝑘 : 𝑘 = 1, ..., 𝑝}. Then we can rewrite z =

∑𝑝

𝑘=1 𝛼𝑘z𝑘 =
∑𝑝

𝑘=1 𝛽𝑘z𝑘 , where

𝛼𝑘 =


𝛼𝑖 if z𝑘 = x𝑖

0 otherwise
and 𝛽𝑘 =


𝛽 𝑗 if z𝑘 = y𝑗

0 otherwise

Then

0 = z − z =

𝑝∑︁
𝑘=1

(
𝛼𝑘 − 𝛽𝑘

)
z𝑘 ⇒ 𝛼𝑘 − 𝛽𝑘 = 0, 𝑘 = 1, ..., 𝑝

since 𝐸 is independent. Therefore 𝛼𝑘 = 𝛽𝑘 , 𝑘 = 1, ..., 𝑝 , which in turn implies 𝑚 = 𝑛 = 𝑝 and
{x𝑖 : 𝑖 = 1, ...,𝑚} = {y𝑗 : 𝑗 = 1, ..., 𝑛}. □

Definition 3.1.7. A Hamel basis for a linear space 𝑉 is a linearly independent set 𝐵 such
that span𝐵 = 𝑉 .

Example. The set of unit coordinate vectors e1, ..., e𝑛 ∈ R𝑛 is a basis for R𝑛 , called the standard
basis. Any vector x ∈ R𝑛 can be written uniquely as x =

∑𝑛
𝑖=1 = 𝑥𝑖e𝑖 . ♣

Lemma 3.1.8. Every vector space has a Hamel basis. Any two bases have the same cardinality,
called the dimension of 𝑉 .

Note that the Hamel basis of infinite-dimensional vector spaces can be unwieldy: remember
that each vector must be a linear combination of finitely many vectors in the basis. In these
notes, we will avoid lengthy discussion of infinite-dimensional vector spaces. In these cases, it
can be useful to define an alternative notion of a basis in which vectors may be written as infinite
sums of basis vectors (e.g., Schauder bases). Occasionally, we will do examples using infinite-
dimensional vector spaces (e.g., the space of all functions on [0, 1]), but approach these with
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caution: some of the intuitions from finite-dimensional linear algebra do not carry directly over
to infinite-dimensional spaces.

Theorem 3.1.9. In an 𝑛-dimensional space, every set of more than 𝑛 vectors is dependent.
Consequently, any independent set of 𝑛-vectors is a basis.

Exercise 3.1. Show that the following set is a basis for R3:


©«
1
1
0

ª®®¬ ,
©«
−1
0
1

ª®®¬ ,
©«
2
1
1

ª®®¬
 .

3.2 Inner products and norms

Definition 3.2.1. The dot product (or inner product or scalar product) of two vectors x and
y in R𝑛 is defined by

x · y = 𝑥𝑇𝑦 = ⟨𝑥,𝑦⟩ =
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

The vector space R𝑛 equipped with the dot product is called Euclidean n-space.

The dot product is an example of an inner product, which may be defined more generally on
vector spaces as follows.

Definition 3.2.2. An inner product space is a vector space 𝑉 over field 𝐾 equipped with
an inner product

⟨·, ·⟩ : 𝑉 ×𝑉 → 𝐾

which is a function satisfying:

• Linearity in first argument: ⟨𝑎𝑥 + 𝑏𝑦, 𝑧⟩ = 𝑎⟨𝑥, 𝑧⟩ + 𝑏⟨𝑦, 𝑧⟩.

• Positive definiteness: ⟨𝑥, 𝑥⟩ ≥ 0 with equality only for 𝑥 = 0.
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• Conjugate symmetry: ⟨𝑥,𝑦⟩ = ⟨𝑦, 𝑥⟩. In particular, if𝐾 is the real field, then ⟨𝑥,𝑦⟩ = ⟨𝑦, 𝑥⟩.

Note that conjugate symmetry implies that ⟨𝑥, 𝑥⟩ is always a real number, so that the formulation
of positive definiteness is correct (remember, the order ≥ implies we must be working with real
numbers since the complex field is not ordered).

Inner products allow us to formalize definition of geometric notions, like lengths, angles and
orthogonality of vectors. Let us start with the first notion.

Definition 3.2.3. The norm induced by the inner product is given by ∥𝑣 ∥ =
√︁
⟨𝑣, 𝑣⟩.

Sometimes it is possible to define length without an inner product. This gives rise to normed
vector spaces.

Definition 3.2.4. A normed vector space is a vector space𝑉 over a field 𝐾 equipped with
a norm

∥ · ∥ : 𝑉 → 𝐾,

which is a function satisfying

• Nonnegativity: ∥𝑥 ∥ ≥ 0 for all 𝑥 ∈ 𝑉 with equality only for 𝑥 = 0.

• Linearity: ∥𝛼𝑥 ∥ = |𝛼 |∥𝑥 ∥ for all 𝛼 ∈ 𝐾 , 𝑥 ∈ 𝑉 .

• Triangle inequality: ∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥ for all 𝑥,𝑦 ∈ 𝑉 .

A vector in 𝑉 with ∥𝑥 ∥ = 1 is called a unit vector. Unit vectors are often notated with hats
on top to remind us that their norm is 1.

You should check that the norm induced by the inner product satisfies all these properties. We
have seen that inner products induce norms, but not all normed vector spaces have inner products.
In fact, only normed spaces satisfying the parallelogram law

2∥𝑥 ∥2 + 2∥𝑦∥2 = ∥𝑥 + 𝑦∥2 + ∥𝑥 − 𝑦∥2

may have an inner product. The inner product (consistent with ∥𝑥 ∥ =
√︁
⟨𝑥, 𝑥⟩) is given by the

formula
⟨𝑥,𝑦⟩ = ∥𝑥 + 𝑦∥2 − ∥𝑥 − 𝑦∥2

4
.
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Theorem 3.2.5. Let 𝑉 = R𝑚 and 𝑝 ≥ 1. The 𝐿𝑝 norm

∥𝑥 ∥𝑝 =

(
𝑚∑︁
𝑖=1

|𝑥𝑖 |𝑝
) 1

𝑝

is a norm, which is not induced by any inner product (except in the case of 𝑛 = 2). When 𝑝 = ∞,
the 𝐿∞ or sup norm is defined by

∥𝑥 ∥∞ = max
1≤𝑖≤𝑚

|𝑥𝑖 |,

which is also not induced by an inner product.

The triangle inequality in the 𝐿𝑝 spaces is of independent interest, and is often known as
Minkowski’s Inequality:(

𝑚∑︁
𝑖=1

|𝑥𝑖 + 𝑦𝑖 |𝑝
) 1

𝑝

≤
(
𝑚∑︁
𝑖=1

|𝑥𝑖 |𝑝
) 1

𝑝

+
(
𝑚∑︁
𝑖=1

|𝑥𝑖 |𝑝
) 1

𝑝

.

An even stronger result is Hölder’s Inequality:

𝑛∑︁
𝑘=1

|𝑥𝑘𝑦𝑘 | ≤
(
𝑛∑︁
𝑘=1

|𝑥𝑘 |𝑝
) 1

𝑝
(
𝑛∑︁
𝑘=1

|𝑦𝑘 |𝑞
) 1
𝑞

for 𝑝, 𝑞 such that
1
𝑝
+ 1
𝑞
= 1.

Let us now return to inner product spaces. An important result is the following inequality.

Theorem 3.2.6 (Cauchy-Schwarz-Bunyakovski Inequality). Let 𝑉 be an inner product space
with inner product ⟨·, ·⟩ and induced norm ∥ · ∥ and 𝑥,𝑦 ∈ 𝑉 . Then we have

|⟨𝑥,𝑦⟩| ≤ ∥𝑥 ∥∥𝑦∥ .

Equality occurs only if 𝑥 and 𝑦 are collinear (i.e., 𝑥 = 𝛼𝑦 for some 𝛼 ∈ 𝐾).

The Cauchy-Schwarz inequality allows us to define notions related to angle.

Definition 3.2.7. Let 𝑉 be an inner product space.

(a) Vectors x, y ∈ 𝑉 are orthogonal if ⟨𝑥,𝑦⟩ = 0. Sometimes we write 𝑥⊥𝑦.

(b) A set of vectors 𝐸 ⊂ 𝑉 is orthogonal if it is pairwise orthogonal.

(c) A set 𝐸 is orthonormal if 𝐸 is orthogonal and ∥x∥ = 1 for all x ∈ 𝐸.
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(d) The angle between 𝑥,𝑦 is defined by ∠(𝑥,𝑦) = arccos
(

⟨𝑥,𝑦⟩
∥𝑥 ∥ ∥𝑦 ∥

)
.

Lemma 3.2.8. If a set of nonzero vectors is orthogonal, then the set is independent.

Proof. Suppose that
∑𝑛
𝑖=1 𝑎𝑖x𝑖 = 0, where x𝑖s are orthogonal. Then for each 𝑘 ,

0 = x𝑘 · 0 = x𝑘 ·
(
𝑛∑︁
𝑖=1

𝑎𝑖x𝑖

)
=

𝑛∑︁
𝑖=1

𝑎𝑖x𝑘 · x𝑖 = 𝑎𝑘x𝑘 · x𝑘

which implies that 𝑎𝑘 = 0. □

Consider an inner product space𝑉 and the line passing through the origin in the direction of
a unit vector x̂ ∈ 𝑉 , i.e. the set {𝛼 x̂ : 𝛼 ∈ 𝐾}. A common problem is to determine the point z
on the line which is closest to another point y, in terms of ∥z − y∥. This corresponds to our first
optimization problem

min
𝛼∈𝐾

∥𝛼 x̂ − y∥.

We call the point z = 𝛼 x̂ the vector projection of y on x̂ and the associated scalar 𝛼 the scalar
projection of y on x̂.

y

x̂
z = 𝛼 x̂

We have all the tools at hand to solve this problem (without calculus). We begin by squaring
the objective, noting that the minimizer of a strictly positive function is the same as the minimizer
of that function’s square. Thus, the squared objective is

∥𝛼 x̂ − y∥2 = ⟨𝛼 x̂ − y, 𝛼 x̂ − y⟩

= 𝛼2∥x̂| |2 − 2𝛼 ⟨x̂, y⟩ + ∥y∥2

= (𝛼 − ⟨x̂, y⟩)2 − ⟨x̂, y⟩2 + ∥y∥2.
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The second and third terms in the above sum are constants with respect to 𝛼 , while the first term
is clearly minimized by setting 𝛼∗ = ⟨x̂, y⟩. This is the scalar projection of y on x̂. The vector
projection is then just 𝛼∗x̂. This leads to an interpretation of the inner product as the projection
onto a unit vector. (If you are applying this fact, remember that we have assumed that ∥𝑥 ∥ = 1,
so don’t forget to normalize the vector of interest first!)

It turns out it is always possible to choose a basis of a finite-dimensional inner product space
𝑉 which is orthogonal. This is achieved by projecting basis vectors on one another, maintaining
only the orthogonal part. This is the so-called Gram-Schmidt procedure.

Theorem 3.2.9 (Gram-Schmidt Orthogonalization). Let 𝑉 be a vector space with an inner
product. Suppose x1, x2, . . . , x𝑛 is a basis for 𝑉 . Let v1 = x1,

v2 = x2 −
⟨x2, v1⟩
⟨v1, v1⟩

v1

v3 = x3 −
⟨x3, v1⟩
⟨v1, v1⟩

v1 −
⟨x3, v2⟩
⟨v2, v2⟩

v2,

· · ·

v𝑛 = x𝑛 −
⟨x𝑛, v1⟩
⟨v1, v1⟩

v1 − · · · − ⟨x𝑛, v𝑛−1⟩
⟨v𝑛−1, v𝑛−1⟩

v𝑛−1.

Then v1, v2, . . . , v𝑛 is an orthogonal basis for 𝑉 .

An orthogonal basis is orthonormal if moreover the norm of each vector in the basis is 1. It is
easy to take the output of the Gram-Schmidt Orthogonalization and normalize it by dividing each
vector by its length in order to obtain an orthonormal basis.

Exercise 3.2. Is the basis in Exercise 3.1 orthonormal? If not, orthogonalize it.

Note that in infinite-dimensional inner product spaces, the above is not the correct definition
of an orthonormal basis: instead, an orthonormal basis is a (possibly uncountable) set of vectors
{𝑥𝛼 }𝛼∈𝐴 such that ⟨𝑥𝛼 , 𝑥𝛼 ⟩ = 1, ⟨𝑥𝛼 , 𝑥𝛽⟩ = 0 for 𝛼 ≠ 𝛽 and ⟨𝑦, 𝑥𝛼 ⟩ = 0 for all 𝛼 ∈ 𝐴 iff 𝑦 = 0.
Hopefully it should be clear that these definitions are equivalent in finite-dimensional spaces. But
in infinite-dimensional spaces, these definitions are not equivalent because the orthonormal basis
as just defined may not be a Hamel basis.
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Exercise 3.3. Let {𝑥1, ..., 𝑥𝑛} be an orthonormal basis for 𝑉 . Show that

𝑣 =

𝑛∑︁
𝑖=1

⟨𝑣, 𝑥𝑖⟩𝑥𝑖 .

and ∥𝑣 ∥ = ∑𝑛
𝑖=1 |⟨𝑣, 𝑥𝑖⟩|2.

In finite dimensions, a consequence of the preceding exercise is the following important theorem
(which is also true in complete infinite-dimensional vector spaces, see Section 5.3).

Theorem 3.2.10 (Riesz Representation Theorem). Let 𝑉 be a (complete) inner product space
and 𝑇 : 𝑉 → R a linear transformation. Then there exists a unique 𝑧 ∈ 𝑉 such that

𝑇 (𝑥) = ⟨𝑧, 𝑥⟩ for all 𝑥 ∈ 𝑉 .

3.3 Matrices

Definition 3.3.1. Amatrix over field 𝐾 is a rectangular array of scalars from the field 𝐾 , or
in other words, a doubly indexed ordered list of scalars. An𝑚 × 𝑛 matrix A has𝑚 rows and
𝑛 columns. It is a function A : {1, ...,𝑚} × {1, ..., 𝑛} → 𝐾 . The set of𝑚 × 𝑛 matrices (over a
fixed field) is denoted M(𝑚,𝑛). We define the following special matrices:

(a) A real matrix is a matrix over the field of real numbers (𝐾 = R).

(b) A square matrix is a matrix with𝑚 = 𝑛.

(c) A matrix is called a diagonal matrix if it is a square matrix and all its nonzero entries
are on the main diagonal, the set of 𝑎𝑖 𝑗 with 𝑖 = 𝑗 .

(d) The n×𝑛 identity matrix I is the 𝑛 ×𝑛 diagonal matrix whose diagonal entries are all 1.

(e) A square matrix is upper triangular if the only nonzero elements are on, or above the
main diagonal (i.e. 𝑎𝑖 𝑗 = 0 for 𝑖 > 𝑗 ). It is lower triangular if 𝑎𝑖 𝑗 = 0 for 𝑖 < 𝑗 .

(f) The zero matrix 0 has all its entries equal to zero.

Note vectors in 𝐾𝑚 may be thought of as matrices with 𝑛 = 1.

Here is a generic matrix:
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A =


𝑎11 ... 𝑎1𝑛

. .

. .

𝑎𝑚1 ... 𝑎𝑚𝑛


Definition 3.3.2. Let a𝑖 define the 𝑖-th row of A and a𝑗 denote the 𝑗-th column. Then matrix
A can be written as

A =


a1

.

a𝑚

 =

[
a1 ... a𝑛

]
The column space of A is the subset of 𝐾𝑚 spanned by the 𝑛 columns of A, and its row
space is the subspace of 𝐾𝑛 spanned by its𝑚 rows.

There are two main interests in studying matrices. The first is their connection to linear
transformations between finite-dimensional vector spaces.

Definition 3.3.3. A linear transformation is a function𝑇 : 𝑉 →𝑊 between vector spaces
𝑉 and𝑊 satisfying𝑇 (𝑎x+𝑏y) = 𝑎𝑇 (x) +𝑏𝑇 (y) for x, y ∈ 𝑉 . The set of linear transformations
from the vector space 𝑉 into the vector space𝑊 is denoted 𝐿(𝑉 ,𝑊 ).

Let𝑇 be a linear transformation from𝑉 into𝑊 , and let 𝑥1, ..., 𝑥𝑛 be an ordered basis for𝑉 and
𝑦1, ..., 𝑦𝑚 be an ordered basis for𝑊 . Define

𝑀 (𝑇 ) =


𝑎11 ... 𝑎1𝑛

. .

. .

𝑎𝑚1 ... 𝑎𝑚𝑛


such that
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𝑇 (𝑥1) =
𝑚∑︁
𝑖=1

𝑎𝑖1𝑦𝑖

𝑇 (𝑥2) =
𝑚∑︁
𝑖=1

𝑎𝑖2𝑦𝑖

.

.

.

𝑇 (𝑥𝑛) =
𝑚∑︁
𝑖=1

𝑎𝑖𝑛𝑦𝑖

Then𝑀 (𝑇 ) is thematrix representation of T with respect to the ordered bases (𝑥𝑖 ), (𝑦 𝑗 ). An
illustration of this transformation is below.

[
𝑎 𝑏

𝑐 𝑑

]

1

1

(𝑎, 𝑐)

(𝑏, 𝑑) (𝑎 + 𝑏, 𝑐 + 𝑑)

The matrix representation provides a 1-to-1 mapping between matrices and linear
transformations from vector spaces.

Theorem 3.3.4. Let𝑉 be an 𝑛-dimensional vector space, and let𝑊 be an𝑚-dimensional vector
space. Fix an ordered basis for each, and let 𝑀 (𝑇 ) be the matrix representation of the linear
transformation𝑇 : 𝑉 →𝑊 . Then the mapping𝑇 → 𝑀 (𝑇 ) is a linear one-to-one mapping from
𝐿(𝑉 ,𝑊 ) to M(𝑚,𝑛).

Corollary 3.3.5. There is a one-to-one mapping between linear transformations from R𝑚 and
R𝑛 and𝑚 × 𝑛 dimensional real matrices.

Our second reason for studying matrices is their relationship to linear equations and
inequalities. To discuss this motivation, we need to introduce a couple of matrix operations.
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Definition 3.3.6. If A and B are𝑚 × 𝑛 matrixes, then the sum A + B is the𝑚 × 𝑛 matrix C
defined by 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗 . The scalar multiple of a matrix A by a scalar 𝑐 is the𝑚 × 𝑛 matrix
D defined by 𝑑𝑖 𝑗 = 𝑐𝑎𝑖 𝑗 .

Clearly, A + 0 = 0 + A = A.

Theorem 3.3.7. The setM(𝑚,𝑛) is a vector space under the operation of matrix addition and
scalar multiplication. It has dimension𝑚𝑛.

Definition 3.3.8. If A is an𝑚 × 𝑝 matrix and B is an 𝑝 × 𝑛 matrix, then the product of A
and B is the𝑚 × 𝑛 matrix C defined by 𝑐𝑖 𝑗 = a′𝑖 · b𝑗 , where · is the dot product. Two matrices
A and B are said to be conformable if AB is well-defined.

Lemma 3.3.9. Properties of matrix multiplication

(a) If A is a square matrix and I is the conformable identity matrix, then AI = IA = A.

(b) (AB)C = A(BC)

(c) AB ≠ BA (in general)

(d) A(B + C) = (AB) + (AC)

(e) (A + B)C = AC + BC

Wenow introduce the linear equations interpretation ofmatrices. Consider the problem of finding
𝑛 scalars 𝑥1, ..., 𝑥𝑛 ∈ R which satisfy the conditions

𝑎11𝑥1 + 𝑎12𝑥2 + ... + 𝑎1𝑛𝑥𝑛 = 𝑦1

𝑎21𝑥1 + 𝑎22𝑥2 + ... + 𝑎2𝑛𝑥𝑛 = 𝑦2

... = .

... = .

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ... + 𝑎𝑚𝑛𝑥𝑛 = 𝑦𝑚

We call the above system a system of m linear equations in n unknowns.
Any 𝑛-tuple (𝑥1, ..., 𝑥𝑛) of elements of R which satisfies each of the equations above is called a
solution of the system.
If 𝑦1 = 𝑦2 = ... = 𝑦𝑚 = 0, we say that the system is homogeneous.
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We can rewrite the above system of equations as

Ax = y

where

A =


𝑎11 ... 𝑎1𝑛

. .

. .

𝑎𝑚1 ... 𝑎𝑚𝑛


x =


𝑥1

.

.

𝑥𝑛


y =


𝑦1

.

.

𝑦𝑚


Three important questions arise:

(i) When does there exist a solution to the above system of equations?

(ii) When is the solution unique?

(iii) How do we go about identifying a solution to the equation?

A somewhat tautological answer to the first question is that b needs to be in the column space of
A. A slightly more satisfying answer involves the rank of the matrix.

Definition 3.3.10. Let A be a matrix.

(a) The column rank of 𝐴 is the largest number of linearly independent columns. It is the
dimension of the column space of𝐴 or the dimension of the range of the associated linear
transformation.

(b) The row rank of𝐴 is the largest number of linearly independent rows. It is the dimension
of the row space of 𝐴.

(c) The null space of 𝐴 is the set of solutions to the homogeneous system 𝐴𝑥 = 0, and its
dimension is called the nullity of 𝐴.

Theorem 3.3.11. The column and row ranks of any matrix are equal.

Proof. Let A be a 𝑚 × 𝑛 matrix. Let the column rank of A be 𝑟 , and let c1, ..., c𝑟 be any basis
for the column space of A. Let C = [c1, ..., c𝑟 ]. Every column of A can be expressed as a linear
combination of the 𝑟 columns in C. This means that there is an 𝑟 ×𝑛 matrix R such that A = CR.
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R is the matrix whose 𝑖th column is formed from the coefficients giving the 𝑖th column of A as a
linear combination of the 𝑟 columns of C. But each row of A is given by a linear combination of
the 𝑟 rows of R. Therefore, the rows of R form a spanning set of the row space of A and hence
the row rank of A cannot exceed 𝑟 . We conclude that the row rank of A is less than or equal to
the column rank of A. Apply the same result to A′, we can that the row rank of A′ is less than or
equal to the column rank of A′. But the row rank of A′ is the column rank of A and the column
rank of A′ is the row rank of A. Hence the last statement is equivalent to: the column rank of
A is less than or equal to the row rank of A. Putting the two together, we conclude that the row
rank of A is equal to the column rank of A. □

Theorem 3.3.12 (Rank-Nullity Theorem). For any𝑚 × 𝑛 matrix A, the sum of the rank of 𝐴
and the nullity of 𝐴 is 𝑛.

Proof. It is easy to show that the nullspace of A is a linear subspace of 𝐾𝑛 . Suppose that its
dimension is 𝑘 (the nullity of A) and let v1, ..., vk be a basis for the nullspace. This basis can be
extended by 𝑛 − 𝑘 linearly independent vectors to obtain a basis for 𝐾𝑛 , and write {w1, ...,wn−k}
for these additional basis vectors.

Now, the rowspace of A is spanned by {Av1,Av2, ...,Avk,Aw1, ...,Awn−k}. But by
construction, these Av1, ..., Avk are all the zero vector. So, the rowspace is spanned by Aw1, ...,
Awn−k. If we can show that this set is linearly independent, then this will establish that the
dimension of the rowspace, the rank, is 𝑛 − 𝑘 , as required.

To see this, suppose otherwise, and let
∑
𝑗 𝛼 𝑗Awj = 0 for some 𝛼 𝑗 . But then A

(∑
𝑗 𝛼 𝑗wj

)
= 0

by the distributive property. But then
∑
𝑗 𝛼 𝑗wj is in the nullspace of 𝐴, which contradicts our

assumption that the {wj} were independent of the {𝑣𝑖}.
□

Theorem 3.3.13 (Fundamental Theorem of Linear Algebra). Let A be any𝑚 ×𝑛 matrix. The
nullspace of 𝐴 is equal to the orthogonal complement of the rowspace of 𝐴, that is, the set of
all vectors that are orthogonal to vectors in the nullspace of 𝐴.

Proof. If 𝑥 is in the nullspace of 𝐴, then 𝐴𝑥 = 0, so that 𝑥 is orthogonal to each of the rows of
𝐴. □

Our first results cover the simple cases of homogeneous linear equations which are under-
determined and exactly-determined.
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Theorem 3.3.14. If A is an𝑚 × 𝑛 matrix with𝑚 < 𝑛, then the homogeneous system of linear
equations Ax = 0 has a non-trivial solution. We call this anunder-determined linear system.

Proof. Note that rankA ≤ min{m, n} = m < n. Then the columns of A are linearly dependent,
and the result follows. □

Theorem 3.3.15. If A is an 𝑛 × 𝑛 matrix then Ax = 0 has only the trivial solution if and only
if A has rank 𝑛. We call this an exactly-determined linear system.

In general, we have the following result.

Theorem 3.3.16 (Rouché-Capelli Theorem). A system of linear equations with 𝑛 variables has
a solution if and only if the rank of its coefficient matrix A is equal to the rank of its augmented
matrix [A|b], obtained by appending the columns b to the right side of the matrix. Moreover,
the solutions form a linear subspace of 𝐾𝑛 of dimension 𝑛 − rank(A).

Now, let us return to the question of identifying the solutions to the equation. One approach
would be to use elementary algebra techniques to manipulate the equations in order to identify a
solution. This underpins the method of solution called Gaussian elimination.

Definition 3.3.17. The three elementary row operations on an𝑚×𝑛 matrix A over the field
R are:

(a) multiplication of one row of A by a non-zero scalar c;

(b) replacement of the 𝑟 th row ar of A by row ar plus 𝑐 times row as;

(c) interchange of two rows of A.

Definition 3.3.18. If A and B are𝑚 × 𝑛 matrices, we say that B is row-equivalent to A if
B can be obtained from A by a finite sequence of elementary row operations.

Theorem 3.3.19. If A and B are row-equivalent𝑚 × 𝑛 matrices, the homogeneous systems of
linear equations Ax = 0 and Bx = 0 have the exact same solutions.

Proof. Suppose we pass from A to B by a finite sequence of elementary row operations:

A = A0 → A1 → ... → Ak = B
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It suffices to prove that the systems Ajx = 0 and Aj+1x = 0 have the same solutions, i.e. that one
elementary row operation does not disturb the set of solutions. Observe that no matter which
of the three types of the operation is, each equation in the system Aj+1x = 0 will be a linear
combination of the equations in the system Ajx = 0. Also, an inverse of an elementary row
operation is an elementary row operation, so each equation in Ajx = 0 is a linear combination of
the equations in Aj+1x = 0. Hence these two systems have the same solutions. □

Example. Consider the following system of equations:

3𝑥1 + 2𝑥2 = 8

2𝑥1 + 3𝑥2 = 7

The above system can be written as

[
3 2
2 3

] [
𝑥1

𝑥2

]
=

[
8
7

]
One way to proceed is to write the augmented matrix of the system:

[
3 2 8
2 3 7

]
We can use elementary row operations to transform the augmented coefficient matrix until we
obtain the identity matrix on the left. Gaussian elimination proceeds left to right, first normalizing
an element on the main diagonal to 1, then eliminating all coefficients above and below that main
diagonal entry before moving to the next main diagonal entry. The final result should take the
form [𝐼 |𝑥]. We show the sequence of elementary row operations below.
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[
3 2 8
2 3 7

]
∼

[
1 2/3 8/3
2 3 7

]
∼

[
1 2/3 8/3
0 5/3 5/3

]
∼

[
1 2/3 8/3
0 1 1

]
∼

[
1 0 2
0 1 1

]
which implies the solution 𝑥1 = 2 and 𝑥2 = 1. ♣

Exercise 3.4. Try to solve

2𝑥 + 5𝑦 = 9

𝑥 + 2𝑦 − 𝑧 = 3

−3𝑥 − 4𝑦 + 7𝑧 = 0.

What goes wrong, and why?

Note that the sequence of row operations did not depend on the coefficient matrix. This means
that for square matrices, if there is a solution to the equation 𝐴𝑥 = 𝑏 for some 𝑏, then there is a
solution to 𝐴𝑥 = 𝑏 for all 𝑏. The mapping from 𝑏 to this solution is itself a linear transformation
(check this!), so it must have a matrix representation. This matrix representation is called the
inverse matrix of 𝐴.

Definition 3.3.20. The left and right inverses of the 𝑛 ×𝑛 matrix A are, respectively 𝑛 ×𝑛
matrices L and R such that LA = I and AR = I.

Theorem 3.3.21. If A has both a left and right inverse, then they are unique and equal.

It is easy to see that invertibility is key to ensuring that the equation Ax = b has a unique
solution, as it may then be calculated as x = A−1b.

Proof. Let L and R be a left and right inverse for A, respectively, so LA = I = AR. Then
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L = LI = L(AR) = (LA)R = IR = R

Since every left inverse is a right inverse and vice versa, we have a uniqueness. □

Definition 3.3.22. A square matrix is invertible if it has an inverse. A square matrix is
singular or degenerate is it is not invertible.

If matrix A is invertible, you can use Gaussian elimination on the augmented matrix [𝐴|𝐼 ] to
obtain [𝐼 |𝐴−1].

Lemma 3.3.23. If A and B are 𝑛 × 𝑛 invertible matrixes, then AB is invertible with inverse
B−1A−1.

Definition 3.3.24. Let A be an𝑚 × 𝑛 dimensional matrix. The transpose B of matrix A is
the 𝑛 ×𝑚 dimensional matrix such that 𝑎𝑖 𝑗 = 𝑏 𝑗𝑖 . We denote the transpose of A as A′ or A′.

Lemma 3.3.25. (AB)′ = B′A′, (A′)′ = A, (A + B)′ = A′ + B′, (𝑐A)′ = cA′.

Lemma 3.3.26. The transpose A′ of A ∈ Rm×m is the adjoint of A under the inner product, that
is

⟨Ax, y⟩ = ⟨x,A′y⟩.

If A ∈ Cm×m, then the adjoint is the conjugate transpose obtained by transposing the matrix
and taking the complex conjugate of each entry (i.e., 𝑎 + 𝑖𝑏 ↦→ 𝑎 − 𝑖𝑏).

Lemma 3.3.27. (A′)−1 = (A−1)′, provided that A has an inverse.

Proof. AA−1 = I ⇒ (AA−1)′ = I ⇒ (A−1)′A′ = I. □

Theorem 3.3.28. An 𝑛 × 𝑛 (real) matrix has an inverse if and only if it has rank 𝑛.

Proof. Let A be an 𝑛 × 𝑛 matrix. Suppose A has rank 𝑛. Then the columns of A span R𝑛 , and
hence for any i𝑗 = e𝑗 , 𝑗 = 1, ..., 𝑛 there is a unique vector x𝑗 such that Ax𝑗 = i𝑗 . But then
A−1 = [x1, ..., x𝑛]. If A has rank strictly less than 𝑛, then span{a1, ..., an} ⊂ span{e1, ..., en}, so
there exists 𝑗 ∈ {1, ..., 𝑛} such that Ax ≠ ej for any x ∈ Rn. Therefore, A does not have an
inverse. □
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Let us now return to the undetermined case of a non-square matrix, 𝐴 with dimensions𝑚 ×𝑛
with𝑚 < 𝑛. It is clear that it is not possible to identify an inverse matrix 𝐴−1 such that 𝐴𝐴−1 =

𝐴−1𝐴 = 𝐼 , merely since a singlematrix cannot be conformable for both left and rightmultiplication
if𝑚 ≠ 𝑛.

However, if 𝐴 has full row rank, i.e. rank 𝑚, then there by the Rouché-Capelli Theorem,
𝐴𝑥 = 𝑏 must have an (𝑛 −𝑚)-dimensional subspace of solutions and 𝐴 must be row-reducible
to an augmented matrix with an 𝑚 × 𝑚 identity matrix on the left (and other columns to the
right). But then, we can obtain an 𝑛 ×𝑚 matrix 𝐴† with 𝐴𝐴† = 𝐼𝑚 . We call such a matrix a right
pseudoinverse. Pseudoinverses are typically not unique.

We will show that the 𝑚 × 𝑛 matrix 𝐴† = 𝐴′(𝐴𝐴′)−1 works as a pseudoinverse. First, we
show that 𝐴𝐴′ is invertible. To see this, we note that 𝐴 has linearly independent rows, so that
𝐴′𝑥 = 0 has only the trivial solution 𝑥 = 0. But then suppose that 𝐴𝐴′ was non-invertible.
Then there exists a non-trivial solution to 𝐴𝐴′𝑥 = 0. But this implies 𝑥 ′𝐴𝐴′𝑥 = 0, which implies
(𝐴′𝑥)′(𝐴′𝑥) = 0 or ∥𝐴′𝑥 ∥2 = 0, which implies that 𝐴′𝑥 = 0, a contradiction. Finally, we note that
𝐴𝐴† = 𝐴𝐴′(𝐴𝐴′)−1 = 𝐼𝑚 .

Similarly, if𝐴 has full column rank, i.e. rank 𝑛, then𝐴† = (𝐴′𝐴)−1𝐴′ is a left pseudoinverse.
Those of you who have taken econometrics before may recognize this expression as the

ordinary least squares projection operator. We will derive this now.
Let 𝑋 be a matrix of 𝑘 observations of 𝑛 covariates (plus a constant term), which we assume

has full column rank (here rank 𝑛 + 1):

𝑋 =


1 𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛

1 𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
...

...
...

...
. . .

...

1 𝑥𝑘1 𝑥𝑘2 𝑥𝑘3 . . . 𝑥𝑘𝑛


,

and 𝑌 be a vector of outcome variables,

𝑌 =


𝑦1

𝑦2
...

𝑦𝑘


.
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The ordinary least squares problem is to identify a set of weights

𝛽 =


𝛽0

𝛽1
...

𝛽𝑛


which solves

min
𝛽∈R𝑛

∥𝑌 − 𝑋𝛽 ∥2.

Let 𝛽∗ be the minimizer of this expression, the OLS estimator, and let 𝑍 ∗ = 𝑋𝛽∗. Note that 𝑍 ∗ is
in the column space of 𝑋 .

The claim now is that 𝑌 −𝑍 ∗ (the vector of residuals) must be orthogonal to every column of
𝑋 . To see this, note that by the fundamental theorem of linear algebra, we may write all vectors
𝑥 in R𝑘 as the sum of a component 𝑥𝑛 in the column space of 𝑋 and a component 𝑥𝑜 orthogonal
to the column space of 𝑋 . So let, 𝑌 = 𝑌𝑛 + 𝑌0. Then for any point 𝑍 in the column space of 𝑋 , we
have that

∥𝑌 − 𝑍 ∥2 = ∥𝑌 − 𝑌𝑛 ∥2 + ∥𝑌𝑛 − 𝑍 ∥2.

Since ∥𝑌𝑛 − 𝑍 ∥2 ≥ 0, we see that 𝑌𝑛 is the unique point in the column space of 𝑋 such that the
OLS objective is minimized, and thus 𝑌 −𝑍 ∗ = 𝑌0, and so is orthogonal to the column space of 𝑋 .

We now must solve the equation 𝑌𝑛 = 𝑋𝛽 to obtain the OLS estimator. If 𝑋 has full column
rank, there is a unique solution 𝛽∗. Since 𝑌 − 𝑍 ∗ = 𝑌 − 𝑋𝛽∗ is orthogonal to the column space of
𝑋 , we must have𝑋 ′(𝑌 −𝑋𝛽∗) = 0. But this implies that𝑋 ′𝑌 = 𝑋 ′𝑋𝛽∗, so that 𝛽∗ = (𝑋 ′𝑋 )−1𝑋 ′𝑌 =

𝑋 †𝑌 .
Note that if 𝑋 does not have full column rank, all of the steps above are valid, except that any

𝛽 solving 𝑌𝑛 = 𝑋𝛽 now constitutes an OLS estimator and 𝛽∗ = (𝑋 ′𝑋 )−1𝑋 ′𝑌 is the OLS estimator
with the lowest norm (all other 𝛽 are equal to 𝛽∗ plus a component in the nullspace of 𝑋 ).

Now, before I said that the pseudoinverse was a “projection” operator. Hopefully you can see
the analogy of the above discussion with scalar and vector projection interpretations of the inner
product (think of 𝑌𝑛 as the vector projection and 𝛽∗ as the scalar projection). Here is what we
mean formally:

Definition 3.3.29. Consider a vector space 𝑉 over field 𝐾 .

(a) A projection on vector space𝑉 is a linear operator𝑇 : 𝑉 → 𝑉 such that𝑇 (𝑇 (𝑥)) = 𝑇 (𝑥)
for all 𝑥 ∈ 𝑉 .
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(b) A 𝑛 × 𝑛 matrix 𝑀 is idempotent if M = M2. Matrices representing a projection are
idempotent.

You can check that 𝑋 (𝑋 ′𝑋 )−1𝑋 ′ is a projection operator, so that 𝑌𝑛 can be thought of as an
“OLS” projection of 𝑌 on to 𝑋 .

Exercise 3.5. Write 𝑃𝑋 for the OLS projection operator and𝑀𝑋 = 𝐼 − 𝑃𝑋 .

(a) Check that 𝑃𝑋 and𝑀𝑋 are projection operators.

(b) Show that 𝑃𝑋𝑦 is in the column space of 𝑋 and 𝑀𝑋𝑦 is in its orthogonal complement (that
is, the set of vectors satisfying 𝑋 ′𝑦 = 0).

(c) Show Pythagoras’ Theorem:

∥𝑦∥2
2 = ∥𝑃𝑋𝑦∥2

2 + ∥𝑀𝑋𝑦∥2
2.

Argue that 𝑃𝑋 and𝑀𝑋 shorten vectors.

(d) Let 𝑣 be in the column space of𝑋 . Show that 𝑃𝑋 𝑣 = 𝑣 and𝑀𝑋 𝑣 = 0. Let𝑤 be in its orthogonal
complement. Show that 𝑃𝑋𝑤 = 0 and 𝑀𝑋𝑤 = 𝑤 .

(e) Suppose there are two groups of regressors, so you partition 𝑋 and 𝛽 as follows:

𝑋 =

[
𝑋1 𝑋2

]
and 𝛽 =

[
𝛽1

𝛽2

]
Observe that you can now write

𝑦 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑢.

Suppose 𝑋1 is a group of regressors that you don’t care much about. You would like to obtain
a closed-form expression for 𝛽2 so that you can analyze it more carefully. How would you do
it?

(f) Now consider the following problem:

min
𝛾

∥𝑀1𝑦 −𝑀1𝑋2𝛾 ∥2 ,

where 𝑀1 = 𝑋1
(
𝑋 ′

1𝑋1
)−1

𝑋 ′
1. Derive an expression for the solution 𝛾 and the vector of
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residuals. What is the significance of what you find? This result is called the
Frisch-Waugh-Lovell Theorem.

Exercise 3.6. Check that the space of real-valued matrices R𝑚×𝑛 satisfies the definition of a
vector space (under the usual definitions of matrix addition and scalar multiplication). Give a
basis and verify its dimension is𝑚𝑛.

Check that the Frobenius inner product

⟨𝐴, 𝐵⟩𝐹 = tr(𝐴′𝐵),

defines an inner product on the space, resulting in the Frobenius norm

∥𝐴∥𝐹 =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴2
𝑖 𝑗 .

As an aside, there are many more norms that may be chosen for this vector space, e.g. the
operator norm, sup𝑥 :𝑥≠0

∥𝐴𝑥 ∥𝑝
∥𝑥 ∥𝑝 , and various norms based on the matrix’s eigenvalues.
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4.1 Eigenvalues

Definition 4.1.1. Let𝑀 be an𝑛×𝑛 realmatrix. A real number 𝜆 is an eigenvalue of𝑀 if there
is a nonzero vector 𝑥 ∈ 𝑉 such that 𝑀𝑥 = 𝜆𝑥 . The vector 𝑥 is called a (right) eigenvector
of𝑀 associated with 𝜆. (Note that the vector 0 is by definition not an eigenvector of𝑀).

Here are some observations:

• If 𝑀 has an eigenvalue 𝜆 with eigenvector 𝑥 , the transformation "stretches" the space by a
factor 𝜆 in the direction 𝑥 .

• While the vector 0 is never an eigenvector, the scalar 0 may be an eigenvalue.

• There are real matrices with no real eigenvalues.

• The identity matrix has an eigenvalue 1 associated with every nonzero vector.

• There is a unique eigenvalue associated with each eigenvector: If𝑀x = 𝜆x and𝑀x = 𝛼x, then
𝛼x = 𝜆x, so 𝛼 = 𝜆.

• On the other hand, one eigenvalue can be associated with many eigenvectors. The span of

55
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the set of eigenvectors associated with the eigenvalue 𝜆 is called the eigenspace of 𝑀
corresponding to 𝜆. The dimension of the eigenspace is called the geometric multiplicity
of 𝜆.

Theorem 4.1.2. Let x1, ..., xn be eigenvectors associated with distinct eigenvalues 𝜆1, ..., 𝜆𝑛 .
Then the vectors x1, ..., xn are independent.

Proof. The proof is by induction on 𝑛. The case 𝑛 = 1 is trivial, since by definition eigenvectors
are nonzero. Now consider 𝑛 > 1 and suppose that the result is true for 𝑛 − 1. Now let

𝑛∑︁
𝑖=1

𝑎𝑖xi = 0

Applying the matrix𝑀 on both sides gives

𝑛∑︁
𝑖=1

𝑎𝑖𝜆𝑖xi = 0

Since
∑𝑛
𝑖=1 𝑎𝑖xi = 0, so is

∑𝑛
𝑖=1 𝑎𝑖𝜆𝑛xi = 0, which combined with the equation above gives

𝑛∑︁
𝑖=1

𝑎𝑖 (𝜆𝑖 − 𝜆𝑛)xi =

n−1∑︁
i=1

ai(𝜆i − 𝜆n)xi = 0

Since x1, ..., xn−1 are independent by the induction hypothesis, it follows that 𝑎𝑖 (𝜆𝑖 − 𝜆𝑛) = 0 for
𝑖 = 1, ..., 𝑛 − 1. Since the eigenvalues are distinct, this implies that 𝑎𝑖 = 0 for 𝑖 = 1, ..., 𝑛 − 1. Thus,
the the above equation reduces to 𝑎𝑛xn = 0, which implies 𝑎𝑛 = 0. This shows that x1, ..., xn are
independent. □

Corollary 4.1.3. A 𝑛×𝑛 matrix𝑀 has at most 𝑛 distinct eigenvalues. If it has 𝑛, then the space
has a basis made up of eigenvectors.

Theorem 4.1.4. If 𝑀 is idempotent, then each of its eigenvalues is either 0 or 1.

Proof. Suppose 𝑀x = 𝜆x with x ≠ 0. Since 𝑀 is idempotent, we have 𝜆x = 𝑀x = 𝑀2x =

𝑀 (𝑀x) = 𝑀𝜆x = 𝜆2x. Since x ≠ 0, this implies that 𝜆 = 𝜆2, so 𝜆 = 0 or 𝜆 = 1. □
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Theorem 4.1.5. Let 𝑀 be a symmetric 𝑛 × 𝑛 real matrix. Then R𝑛 has an orthonormal basis
consisting of eigenvectors of𝑀 .

Exercise 4.1. A row-stochastic matrix is a square matrix with nonnegative entries such that
the sum of each row is one.

(a) Show that 1 is always an eigenvalue of the matrix.

(b) Show that the product of two row-stochastic matrices is row-stochastic.

(c) Use this fact to show that all other eigenvalues of the matrix are smaller in modulus than 1.

For any matrix 𝐴, show that 𝐴 and 𝐴′ have the same eigenvalues, so that the above results on
eigenvalues also hold for column-stochastic matrices.

Exercise 4.2 (Markov Chain: running example). Consider two cities 𝐴 and 𝐵. Suppose that in
each year, each resident of 𝐴 has a 10% chance of moving to 𝐵 (and a 90% chance of remaining
in 𝐴), while each resident of 𝐵 has a 30% chance of moving to 𝐴.

If initially the cities have the same population, write a matrix equation for the populations
in the following year (in terms of the proportion of the populations). The matrix in this equation
is called the transition matrix. Check that it is row-stochastic.

Calculate its eigenvalues and eigenvectors.

4.2 Diagonalization

Definition 4.2.1. Two square matrices A and B are called similar if there is some
nonsingular matrix C such that A = CBC−1, and equivalently B = C−1AC.

Theorem 4.2.2. Two matrices are similar if and only if they represent the same linear
transformation.

Theorem 4.2.3. If A and B are similar, with A = CBC−1, then 𝜆 is an eigenvalue of A if it is
an eigenvalue of B. If 𝑥 is an eigenvector of A, then C−1x is an eigenvector of B.
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Proof. Suppose x is an eigenvector of A, so Ax = 𝜆x. Since A = CBC−1,

𝜆x = Ax = CBC−1x = CBy

Premultiplying by C−1, we have that 𝜆y = By. □

Theorem 4.2.4. If A and B are similar, then rankA = rankB.

Proof. We prove rankB ≥ rankA. Symmetry completes the argument. Let z1, ..., zk be a basis for
range of A, zi = Ayi. Put wi = C−1yi. Then Bwi’s are independent. To see this, suppose that
0 =

∑k
i=1 𝛼i(Bwi). It needs to be shown that 𝛼𝑖 = 0 for 𝑖 = 1, ..., 𝑘 . We have that

0 =

k∑︁
i=1

𝛼i(Bwi) =
k∑︁

i=1

𝛼iC−1ACC−1yi =

k∑︁
i=1

𝛼iC−1zi = C−1

(
k∑︁

i=1

𝛼izi

)
Since C−1 is nonsingular, this implies that

∑𝑘
𝑖=1 𝛼𝑖zi = 0. Since zi’s are linearly independent, this

implies that 𝛼𝑖 = 0 for 𝑖 = 1, ..., 𝑘 . □

Definition 4.2.5. A square matrix X is orthogonal if X′X = I, or equivalently X′ = X−1.

Theorem 4.2.6. (Principal Axis Theorem) Let A be a symmetric 𝑚 ×𝑚 real matrix. Let
x1, ..., xm be an orthonormal basis for R𝑚 made up of eigenvectors of A, with corresponding
eigenvalues 𝜆1, ..., 𝜆𝑚 . Let Λ = diag(𝜆i) and let X = [x1, ..., xm]. Then

A = XΛX−1

Λ = X−1AX

and X is orthogonal, that is X−1 = X′.

Proof. X′X = I by orthonormality, so X−1 = X′. Pick any z and set y = X−1z, so z = Xy =∑m
j=1 yjxj. Then
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Az =

m∑︁
j=1

yjAxj =

𝑚∑︁
𝑗=1
𝑦 𝑗 (𝜆 𝑗xj)

= XΛy

= XΛX−1z

Since z is arbitrary, A = XΛX−1. □

Theorem 4.2.7 (Rayleigh Quotients). Let 𝐴 be a symmetric matrix and 𝜆min and 𝜆max the
smallest and largest eigenvalues. Then, we have that

𝜆min(𝐴) = min
𝑥

{𝑥 ′𝐴𝑥 : 𝑥 ′𝑥 = 1}

𝜆max(𝐴) = max
𝑥

{𝑥 ′𝐴𝑥 : 𝑥 ′𝑥 = 1} .

Proof. We use the Principal Axis Theorem to prove this result. We show this only for the largest
eigenvalue; the proof for the expression for the smallest eigenvalue follows similar lines.

Since 𝐴 = 𝑋Λ𝑋 −1, we have

max
𝑥

{𝑥 ′𝐴𝑥 : 𝑥 ′𝑥 = 1} = max
𝑥

{
𝑥 ′𝑋Λ𝑋 −1𝑥 : 𝑥 ′𝑥 = 1

}
.

Now we can define the new variable 𝑥 = 𝑋 ′𝑥 , so that 𝑥 = 𝑋𝑥 , and express the problem as

max
𝑥

{𝑥 ′𝐴𝑥 : 𝑥 ′𝑥 = 1} = max
𝑥

{𝑥 ′Λ𝑥 : 𝑥 ′𝑥 = 1}

= max
𝑥

{
𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 :

𝑛∑︁
𝑖=1

𝑥2
𝑖 = 1

}
.

Clearly, the maximum is less than 𝜆max. That upper bound is attained, with 𝑥𝑖 = 1 for an index
𝑖 such that 𝜆𝑖 = 𝜆max, and 𝑥 𝑗 = 0 for 𝑗 ≠ 𝑖 . This proves the result. This corresponds to setting
𝑥 = 𝑈𝑥 = 𝑢𝑖 , where 𝑢𝑖 is the eigenvector corresponding to 𝜆𝑖 = 𝜆max. □

Definition 4.2.8. Let A be an𝑚 ×𝑚 matrix. The trace of A, denoted trA is defined by

trA =

m∑︁
i=1

aii
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Lemma 4.2.9. Let A and B be𝑚 ×𝑚 matrixes. Then

tr(𝛼A + 𝛽B) = 𝛼trA + 𝛽trB

tr(AB) = tr(BA)

Proof. The linearity is straightforward. For the second claim, observe that

trAB =

m∑︁
i=1

(
m∑︁

j=1

aijbji

)
=

m∑︁
j=1

(
m∑︁

i=1

bjiaij

)
= trBA

□

Corollary 4.2.10. If B = C−1AC, then trB = trA.

Proof.

trB = tr
(
C−1AC

)
= tr

(
ACC−1) = tr (AI) = trA

□

Theorem 4.2.11. The trace is equal to the sum of its eigenvalues.

Theorem 4.2.12. If A is symmetric and idempotent, then trA = rankA.

Proof. Since A is symmetric, A = XBX−1, where X = [x1, ..., xm] us an orthogonal matrix whose
columns are eigenvectors of A, and B is a diagonal matrix whose diagonal elements are the
eigenvalues of A, which are either 0 or 1. Therefore, trB is the number of nonzero eigenvalues of
A. Also, rankB is the number of nonzero diagonal elements. Thus trB = rankB. Since A and B
are similar, trA = trB = rankB = rankA. □

Exercise 4.3. Diagonalize the transition matrix in Problem 4.2, and calculate the proportions
of population living in each city after fifty years. As 𝑡 → ∞, what is the limiting proportions of
population in each city?
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4.3 Principal components analysis

In this section, let 𝑋 be an 𝑘 × 𝑛 data set, where each row corresponds to an observation of 𝑛
covariates.

𝑋 =


𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛

𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
...

...
...

. . .
...

𝑥𝑘1 𝑥𝑘2 𝑥𝑘3 . . . 𝑥𝑘𝑛


,

One question we might ask is what column—or linear combination of columns—explains most of
the variance in the data. This might be thought of as the most important dimension of variation
in the data.

Definition 4.3.1. The variance maximization problem for 𝑋 solves

max
𝑢∈R𝑛 :∥𝑢 ∥=1

𝑢′Σ𝑢,

where

Σ =
1
𝑛

𝑘∑︁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)′

is the covariance matrix of the data and 𝑥 = 1
𝑛

∑𝑘
𝑖=1 𝑥𝑖 . The solution to the variance

maximization problem 𝑢∗ is the first principal component of 𝑋 .

We have encountered the variance maximization problem before: it was the problem that defined
the Rayleigh quotient. We thus have the following theorem.

Theorem 4.3.2. The first principal component of𝑋 is the normalized eigenvector corresponding
to the largest eigenvalue of its covariance matrix Σ.

There is no need to stop at the first principal component. The data can then be projected onto
the hyperplane orthogonal to the first principal component, and the first principal component of
this projected data is the second principal component, and so on. It may not surprise you that
the second principal component is just the normalized eigenvector corresponding to the second-
largest eigenvalue and so on.

Principal components analysis is used to identify a lower-dimensional approximation of high-
dimensional data. A natural question is how much of the variance is explained by the first 𝑗
principal components. We now show how this question relates to the eigenvalue decomposition
of the matrix Σ.
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Note that the total variance of the data set 𝑋 is just the sum of the entries on the diagonals of
the covariance matrix Σ. But this is just tr(Σ). But this is just the eigenvalues of Σ.

On the other hand, if we project the data on a two-dimensional plane corresponding to the
first two eigenvectors 𝑣1 and 𝑣2, we obtain a new covariance matrix 𝑃Σ𝑃 ′, where 𝑃 = [𝑣1𝑣2]′, and
the total variance of this matrix is just 𝜆1 + 𝜆2.

Thus, the ratio of the variance explained by the first two principal components is 𝜆1+𝜆2
𝜆1+𝜆2+...+𝜆𝑛

4.4 Quadratic forms

Definition 4.4.1. Let A be an 𝑛 × 𝑛 symmetric matrix, and let x be an 𝑛-vector. Then x′Ax
is scalar, and

x′Ax =

n∑︁
i=1

n∑︁
j=1

aijxixj

The mapping 𝑄 : x → x′Ax is the quadratic form defined by A.

Definition 4.4.2. A symmetric matrix A is called:

(a) positive definite if x′Ax > 0 for all nonzero x;

(b) negative definite if x′Ax < 0 for all nonzero x;

(c) positive semidefinite if x′Ax ≥ 0 for all x;

(d) negative semidefinite if x′Ax ≤ 0 for all x.

Theorem 4.4.3. The symmetric matrix A is
(a) positive definite if and only if all its eigenvalues are strictly positive;
(b) negative definite if and only if all its eigenvalues are strictly negative;
(c) positive semidefinite if and only if all its eigenvalues are nonnegative;
(d) negative semidefinite if and only if all its eigenvalues are nonpositive.

Proof. By the Principal Axis Theorem, A = XΛX′, where X is an orthogonal matrix with columns
that are eigenvectors of A, and Λ is a diagonal matrix of eigenvalues of A. Then the quadratic
form can be written in term of the diagonal matrix Λ:
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x′Ax = x′XΛX′x = y′Λy =

n∑︁
i=1

𝜆iy2
i

where 𝑦 = X′x. □

.

Exercise 4.4. Let 𝑃 be an invertible linear transformation, and let 𝑦 be a change of variables
related to 𝑥 by 𝑦 = 𝑃𝑥 . Show that the quadratic form defined by 𝐴 on 𝑦 has the same nature as
the quadratic form defined by 𝐴 on 𝑥 .

4.5 Determinants

Definition 4.5.1. Let 𝐹 : M(𝑛, 𝑛) → R. We say that 𝐹 ismultilinear if

𝐹

(
a1, ..., 𝛼ak + 𝛽bk, ..., an

)
= 𝛼𝐹

(
a1, ..., ak, ..., an

)
+ 𝛽𝐹

(
a1, ..., bk, ..., an

)
We say that 𝐹 is alternating if whenever ai = aj for some 𝑖, 𝑗 = 1, ..., 𝑛, 𝑖 ≠ 𝑗 , we have

𝐹
(
a1, ..., ai, ..., aj, ..., an) = 0

Lemma 4.5.2. The multilinear function 𝐹 is alternating if and only if interchanging ai and aj

changes the sign of 𝐹 , that is

𝐹
(
a1, ..., ai, ..., aj, ..., an) = −𝐹

(
a1, ..., aj, ..., ai..., an)

Proof. Suppose first that 𝐹 is alternating. Then
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0 = 𝐹
(
a1, ..., ai + aj, ..., aj + ai, ..., an)

= 𝐹
(
a1, ..., ai, ..., aj, ..., an) + 𝐹 (

a1, ..., aj, ..., ai, ..., an)
+ 𝐹

(
a1, ..., ai, ..., ai, ..., an) + 𝐹 (

a1, ..., aj, ..., aj, ..., an)
= 𝐹

(
a1, ..., ai, ..., aj, ..., an) + 𝐹 (

a1, ..., aj, ..., ai, ..., an)
Now suppose that interchanging ai and aj changes the sign of 𝐹 . Then if ai = aj, so

𝐹
(
a1, ..., ai, ..., ai, ..., an) = −𝐹

(
a1, ..., ai, ..., ai, ..., an)

so

𝐹
(
a1, ..., ai, ..., ai, ..., an) = 0

Therefore, 𝐹 is alternating. □

Definition 4.5.3. A permutation i is an ordered list i = (i1, ..., in) of the numbers 1, 2, ..., 𝑛.
The signature sgn(i) of i is 1 if i can be obtained from (1, 2, ..., 𝑛) by switching terms an
even number of times, and −1 if i can be obtained from (1, 2, ..., 𝑛) by switching terms an odd
number of times.

Theorem 4.5.4. For any matrix A ∈ M(n, n), there is a number det(A) such that for any
alternating multilinear 𝐹 : M(𝑛, 𝑛) → R,

𝐹 (A) = det(A) · F(I)

Proof. Write

𝐹 (A) = F

(
n∑︁

i1=1

ai11ei1,

n∑︁
i2=1

ai22ei2, ...,

n∑︁
in=1

ainnein

)
Using the linearity in the first component
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𝐹 (A) =
n∑︁

i1=1

ai11F

(
ei1,

n∑︁
i2=1

ai22ei2, ...,

n∑︁
in=1

ainnein

)
and repeating this for other components leads to

𝐹 (A) =
n∑︁

i1=1

n∑︁
i2=1

· · ·
n∑︁

in=1

ai11ai22 · · · ainnF
(
ei1, ei2, ..., ein

)
Now consider 𝐹

(
ei1, ei2, ..., ein

)
. Since 𝐹 is alternating, this term is zero unless 𝑖1, ..., 𝑖𝑛 are distinct.

Since 𝐹 (e1, e2, ..., en) = F(I), it follows that

𝐹 (A) = det(A)F(I)

where

det(A) =
∑︁

i

sgn(i) · ai11ai22 · · · ainn

□

Theorem 4.5.5. The function

det(A) =
∑︁

i

sgn(i) · ai11ai22 · · · ainn

is an alternating multilinear form.

Proof. Observe that in each product sgn(i) · 𝑎𝑖11𝑎𝑖22 · · · 𝑎𝑖𝑛𝑛 in the sum there is exactly one
element from each row and each column of A. Then it is obvious that
𝐹

(
a1, ..., 𝛼ai, ..., an) = 𝛼𝐹 (

a1, ..., ai, ..., an) . It is straightforward to verify that

𝐹
(
a1, ..., ai + bi, ..., an) = 𝐹 (

a1, ..., ai, ..., an) + 𝐹 (
a1, ..., bi, ..., an)

To prove that det is alternating, suppose ai = aj for 𝑖 ≠ 𝑗 . For any permutation i with 𝑖𝑝 ≠ 𝑖𝑞 for
𝑝 ≠ 𝑞, there is exactly one permutation i′ satisfying 𝑖𝑝 = 𝑖′𝑝 for 𝑝 ∉ {𝑖, 𝑗}, and 𝑖𝑖 = 𝑖′𝑗 and 𝑖 𝑗 = 𝑖′𝑖 .
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Observe that sgn(i) = −sgn(i′) as it requires an odd number of interchanges to swat two elements
in a list. Hence, we can rewrite

det𝐴 =
∑︁

i:sgn(i)=1

𝑎𝑖11𝑎𝑖22 · · · 𝑎𝑖𝑛𝑛 − 𝑎𝑖′11𝑎𝑖′22 · · · 𝑎𝑖′𝑛𝑛

Since each 𝑎𝑖11𝑎𝑖22 · · · 𝑎𝑖𝑛𝑛 − 𝑎𝑖′11𝑎𝑖′22 · · · 𝑎𝑖′𝑛𝑛 = 0, it follows that detA, so det is alternating. □

Summing things up:

Corollary 4.5.6. An alternating multilinear function 𝐹 : M(𝑛, 𝑛) → R is identically zero
if and only if 𝐹 (I) = 0. The determinant is the unique alternating multilinear function 𝐹 :
M(𝑛, 𝑛) → R satisfying 𝐹 (I) = 1. Any other alternating multilinear function 𝐹 : M(𝑛, 𝑛) → R
is of the form 𝐹 = 𝐹 (I) · det.

This characterization of the determinant as the unique alternating multilinear form with
𝐹 (𝐼 ) = 1 allows us to offer the following geometric interpretation of the determinant.

Definition 4.5.7. A parallelepiped of vectors 𝑣1, 𝑣2, ..., 𝑣𝑛 is the set{
𝑛∑︁
𝑖=1

𝛼𝑖𝑣𝑖 | for all 𝑖, 0 ≤ 𝛼𝑖 ≤ 1

}
.

𝑣1

𝑣2

𝑣3

Figure 4.1. Parallelepiped of 𝑣1, 𝑣2 and 𝑣3

Let 𝐴 be the 𝑛 × 𝑛 matrix with rows 𝑣1, 𝑣2, ..., 𝑣𝑛 . We argue that |det(𝐴) | is the volume of the
parallelepiped formed by 𝑣1, 𝑣2, ..., 𝑣𝑛 . To do so, we note that the volume operator on matrices
shares the same properties as the determinant. First, det(𝐼 ) = 1 corresponds to the parallelepiped
formed by the standard unit normal vectors, which is a unit cube of volume 1. The alternating
property of the determinant corresponds to the parallelepiped having two collinear sides,
making it (𝑛 − 1)−dimensional, therefore having zero volume (e.g., think about a parallelogram
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in three dimensions). The multilinearity of the determinant is more complicated: if one side of
the parallelepiped is 𝛼𝑤𝑖 + 𝛽𝑤2, we can consider the two parallelepipeds with the same base
(other sides) and with sides𝑤𝑖 and𝑤2 respectively. Since the volume of a parallelepiped is (base)
times (perpendicular height), and the perpendicular height is the scalar projection of the height
vector onto the orthogonal complement of the subspace corresponding to the other sides, the
multilinearity of the volume follows from the linearity of the inner product.

Here are some other properties of the determinant:

Theorem 4.5.8. If A′ is the transpose of A, then detA = detA′.

Theorem 4.5.9. Adding a scalar multiple of one column of A to a different column leaves the
determinant unchanged. Likewise for rows.

Proof.

det
(
a1, ..., aj + 𝛼ak, ..., ak, ..., an

)
= det

(
a1, ..., aj, ..., ak, ..., an

)
+ 𝛼det

(
a1, ..., ak, ..., ak, ..., an

)
= det

(
a1, ..., aj, ..., ak, ..., an

)
The result for rows follows from the previous theorem. □

Theorem 4.5.10. The determinant of an upper triangular matrix is the product of the diagonal
entries.

Proof. Recall that an upper triangular matrix is one for which 𝑖 > 𝑗 implies 𝑎𝑖 𝑗 = 0. Observe that
the only summand that is nonzero comes from the permutation (1, 2, ..., 𝑛), since for any other
permutation there is some 𝑗 satisfying 𝑖 𝑗 > 𝑗 . □

Theorem 4.5.11. Let A and B be 𝑛 × 𝑛 matrices. Then

detAB = detA · detB

Proof. If B is an 𝑛 × 𝑛 matrix and 𝐹 is an alternating multilinear function, so is 𝐹B defined by

𝐹B(a1, ..., an) = F(Ba1, ...,Ban)

Then 𝐹B(I) = F(B) = detB · F(I). Then

𝐹AB(I) = F(AB) = detAB · F(I)
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On the other hand

𝐹AB(I) = FA(B) = detBFA(I) = detB · F(A) = detB · detA · F(I)

Therefore, detAB = detA · detB. □

Corollary 4.5.12. If detA = 0, then A has no inverse.

Proof. Observe that if A has an inverse, then

1 = detI = detA · det(A−1)

so detA ≠ 0. □

Corollary 4.5.13. The determinant of an orthogonal matrix is ±1.

Proof. Recall that A is orthogonal is A′A = I. By the above theorems, we have that
det(A′)det(A) = 1, and det(A′) = det(A), which imply that (detA)2 = 1. □

Definition 4.5.14. Let A be an𝑚 × 𝑛 matrix, and let 0 < 𝑘 ≤ min{𝑚,𝑛}. A 𝑘 × 𝑘 minor of
A is the determinant of a 𝑘 × 𝑘 matrix obtained from A by deleting 𝑚 − 𝑘 rows and 𝑛 − 𝑘
columns. If A is an 𝑛 × 𝑛 matrix, then the minor obtained by deleting the same 𝑘 rows and
columns is called a principalminor of order k. Let𝑚𝑖, 𝑗 denote the minor of a square matrix
A obtained by deleting the 𝑖-th row and 𝑗-the column from A.
A cofactor 𝑐𝑖, 𝑗 of a square 𝑛 × 𝑛 matrix A is the determinant obtained by replacing the 𝑗-th
column of A with 𝑖-th unit coordinate vector ei:

𝑐𝑖, 𝑗 = det
(
a1, ..., aj−1, ei, aj+1, ..., an)

Lemma 4.5.15. For any 𝑛 × 𝑛 matrix A,

𝑐𝑖, 𝑗 = (−1)𝑖+𝑗𝑚𝑖, 𝑗

Consequently

detA =

n∑︁
i=1

(−1)i+jaijmi,j
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Similarly

detA =

n∑︁
j=1

(−1)i+jaijmi,j

Theorem 4.5.16. For a square matrix A, we have that

A


𝑐1,1 ... 𝑐𝑛,1

. .

. .

𝑐1,𝑛 ... 𝑐𝑛,𝑛


= (detA)I

Consequently, if detA ≠ 0, then

A−1 =
1

detA


𝑐1,1 ... 𝑐𝑛,1

. .

. .

𝑐1,𝑛 ... 𝑐𝑛,𝑛


Combined with a theorem above we obtained the following:

Corollary 4.5.17. A square matrix is invertible if and only if its determinant is nonzero.

Definition 4.5.18. The characteristic polynomial 𝑓 of a square matrix A is defined by 𝑓 (𝜆) =
det(𝜆I − A). Roots of this polynomial are called characteristic roots of A.

Lemma 4.5.19. Every eigenvalue of a matrix is a characteristic root, and every real
characteristic root is an eigenvalue.

Proof. To see this, note that if 𝜆 is an eigenvalue with eigenvector x ≠ 0, then
(𝜆I − A)x = 𝜆x − Ax = 0, so (𝜆I − A) is singular, so det(𝜆I − A) = 0. Therefore, 𝜆 is a
characteristic root of A.
Conversely, if det(𝜆I − A) = 0, then there is some nonzero x with (𝜆I − A)x = 0, or Ax = 𝜆x. □

□
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Lemma 4.5.20. The determinant of a square matrix is the product of its characteristic roots.

Proof. Let A be an 𝑛 × 𝑛 square matrix and let 𝑓 be its characteristic polynomial. Then 𝑓 (0) =

det(−A) = (−1)ndetA. On the other hand, we can factor 𝑓 as

𝑓 (𝜆) = (𝜆 − 𝜆1) · · · (𝜆 − 𝜆𝑛)

where 𝜆1, ..., 𝜆𝑛 are its characteristic roots. Thus, 𝑓 (0) = (−1)𝑛𝜆1 · · · 𝜆𝑛 . □

The algebraic multiplicity of an eigenvalue 𝜆0 is the number of times that (𝜆 − 𝜆0) divides
into the characteristic polynomial.

Exercise 4.5. (For this problem, I am assuming you know the basics of differentiation, but if
you are rusty, don’t worry: we will review differentiation in a week or two.)

Let 𝑓 , 𝑔 : R→ R be differentiable functions. Show that 𝑓 and 𝑔 are linearly independent in
𝐶 ( [0, 1]) if the Wronskian determinant

𝑊 :=

����� 𝑓1 𝑓2

𝑓 ′1 𝑓 ′2

����� ,
is not identically zero (note that𝑊 : R→ R is a function, so by “not identically zero”, it is okay
for the function to take the value of zero at some points in its domain).

4.6 Generalizing Diagonalization

We have the following result related to the Principal Axis Theorem.

Theorem 4.6.1 (Spectral Theorem). Let 𝐴 be an 𝑛 × 𝑛 matrix. Then 𝐴 is diagonalizable—
that is, similar to a diagonal matrix—if and only if the algebraic multiplicity of each eigenvalue
equals its geometricmultiplicity. This is the case if and only if there exists a basis for 𝐹𝑛 consisting
of eigenvectors of 𝐴, in which case the diagonalization may be written 𝐴 = 𝑃𝐷𝑃−1, where 𝑃 is
the matrix having these basis vectors as columns and 𝐷 is the diagonal matrix containing the
corresponding eigenvalues.

There are, however, real matrices that are not diagonalizable. For example, the projection

matrix

[
0 1
0 0

]
is not diagonalizable.
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We now discuss two decompositions of matrices that generalize the diagonalization. The first
works for all square matrices and is called the Jordan normal form. The second works more
generally for𝑚 × 𝑛 matrices and is called the singular value decomposition.

Definition 4.6.2. A Jordan block is a square matrix of the form

𝐽𝑖 =



𝜆𝑖 1

𝜆𝑖
. . .

. . . 1
𝜆𝑖


Theorem 4.6.3 (Jordan normal form). Every square matrix is similar to a block diagonal
matrix

𝐽 =


𝐽1

. . .

𝐽𝑝


where each block 𝐽𝑖 is a Jordan block.

The Jordan normal form of a matrix 𝐴 is found as follows: first, calculate the characteristic
polynomial and the eigenvalues of 𝐴. The number of Jordan blocks of eigenvalue 𝜆 is the
geometric multiplicity of 𝜆. The number of Jordan blocks of eigenvalue 𝜆 of size 𝑘 is equal to

2 × nullity((𝐴 − 𝜆𝐼 )𝑘 ) − nullity((𝐴 − 𝜆𝐼 )𝑘−1) − nullity((𝐴 − 𝜆𝐼 )𝑘+1) .

The columns of the similarity matrix 𝑃 (so that 𝐽 = 𝑃−1𝐴𝑃 ) are the generalized eigenvectors,
which solve (𝐴 − 𝜆𝐼 )𝑘𝑥 = 0.

Definition 4.6.4. Given an eigenvalue 𝜆, we say that 𝑣1, 𝑣2, . . . , 𝑣𝑟 form a chain of
generalized eigenvectors of length 𝑟 if 𝑣1 ≠ 0 and

𝑣𝑟−1 = (𝐴 − 𝜆𝐼 )𝑣𝑟
𝑣𝑟−2 = (𝐴 − 𝜆𝐼 )𝑣𝑟−1

...

𝑣1 = (𝐴 − 𝜆𝐼 )𝑣2

0 = (𝐴 − 𝜆𝐼 )𝑣1

The vectors in a chain of generalized eigenvectors are linearly independent. Moreover, for any



72 4 Eigendecompositions and SVD

eigenvalue with algebraic multiplicity 𝑘 , there exists 𝑘 generalized eigenvectors associated with
eigenvalue 𝜆.

A nice result that can be proven using the Spectral Decomposition (but we will not) is the
Cayley-Hamilton Theorem: every square matrix 𝐴 satisfies its own characteristic polynomial.

We now turn to non-square matrices, and identify a decomposition similar to the
eigendecomposition of square matrices, exploiting the fact that 𝐴′𝐴 is always square and
symmetric.

Theorem 4.6.5 (Singular Value Decomposition). Let 𝐴 ∈ R𝑚×𝑛 be a rank 𝑟 matrix. There
exists orthogonal matrices 𝑈 ∈ R𝑚×𝑚,𝑉 ∈ R𝑛×𝑛 and a diagonal matrix 𝑆 = diag (𝜎1, . . . , 𝜎𝑟 ),
such that

𝐴 =

𝑟∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
′
𝑖 = 𝑈𝑆𝑉

′, 𝑆 :=

(
𝑆 0
0 0

)
.

The positive numbers 𝜎1 ≥ . . . ≥ 𝜎𝑟 > 0 are unique and called the singular values of 𝐴.
The first 𝑟 columns of𝑈 : 𝑢𝑖 , 𝑖 = 1, . . . , 𝑟 (resp. 𝑉 : 𝑣𝑖 , 𝑖 = 1, . . . , 𝑟 ) are called left (resp. right)

singular vectors of 𝐴, and satisfy

𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 , 𝑢′𝑖𝐴 = 𝜎𝑖𝑣𝑖 , 𝑖 = 1, . . . , 𝑟 .

Proof. First note that the 𝑛 × 𝑛 matrix 𝐴′𝐴 is real and symmetric, and so by the Principal Axis
Theorem, it may be diagonalized as 𝐴′𝐴 = 𝑉Λ𝑉 ′, with 𝑉 a 𝑛 × 𝑛 matrix whose columns form an
orthonormal basis (that is,𝑉 ′𝑉 = 𝑉𝑉 ′ = 𝐼𝑛 ), and Λ = diag (𝜆1, . . . , 𝜆𝑟 , 0, . . . , 0). Here, 𝑟 is the rank
of 𝐴′𝐴 (if 𝑟 = 𝑛 then there are no trailing zeros in Λ ).

Since𝐴′𝐴 is positive semi-definite, the 𝜆 𝑗 ’s are non-negative, and we can define the non-zero
quantities 𝜎 𝑗 :=

√︁
𝜆 𝑗 , 𝑗 = 1, . . . , 𝑟 . Note that when 𝑗 > 𝑟, 𝐴𝑣 𝑗 = 0, since then

𝐴𝑣 𝑗2
2 = 𝑣 ′𝑗𝐴

′𝐴𝑣 𝑗 =

𝜆 𝑗𝑣
′
𝑗𝑣 𝑗 = 0. The matrix 𝑈 is constructed by setting

𝑢𝑖 =
1
𝜎𝑖
𝐴𝑣𝑖 , 𝑖 = 1, . . . , 𝑟 .

These𝑚-vectors are unit vectors, and mutually orthogonal, since the 𝑣 𝑗 ’s are eigenvectors of𝐴′𝐴.
If 𝑟 < 𝑚, we can complete this set of vectors using the Gram-Schmidt procedure to get

𝑢𝑟+1, . . . , 𝑢𝑚 in order to form an orthogonal matrix 𝑈 := (𝑢1, . . . , 𝑢𝑚) ∈ R𝑚 . Let us check that
𝑈 ,𝑉 satisfy the conditions of the theorem, by showing that
𝑈 ′𝐴𝑉 ′ = 𝑆 := diag (𝜎1, . . . , 𝜎𝑟 , 0, . . . , 0). We have

(𝑈 ′𝐴𝑉 )𝑖 𝑗 = 𝑢′𝑖𝐴𝑣 𝑗 =

𝜎 𝑗𝑢

′
𝑖𝑢 𝑗 if 𝑗 ≤ 𝑟

0 otherwise,
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where the second line follows by 𝐴𝑣 𝑗 = 0 when 𝑗 > 𝑟 . Thus, 𝑈 ′𝐴𝑉 = 𝑆 , as claimed. □

Exercise 4.6. Calculate the Jordan form of the matrix

©«
1
2

1
4

1
4

0 1
2

1
2

0 0 1

ª®®¬ .
Calculate an expression for the 𝑛th power of the matrix.
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5.1 Metric spaces

Definition 5.1.1. A set 𝑋 together with a real-valued function 𝑑 is called a metric space if
for all 𝑥,𝑦, 𝑧 ∈ 𝑋 , the following properties are satisfied:

(a) 𝑑 (𝑥, 𝑥) = 0;

(b) 𝑑 (𝑥,𝑦) > 0 if 𝑥 ≠ 𝑦;

(c) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥);

(d) 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧,𝑦).

The last property is often referred to as the triangle inequality. Any function that satisfies
these properties is called a distance function, or a metric. The elements of 𝑋 are often
called points.
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In normed spaces, metrics can always be defined in such a way that the distance between
two points is equal to the distance of their difference from the zero vector, so that

𝑑 (𝑥,𝑦) = ∥𝑥 − 𝑦∥

is themetric induced by norm ∥ · ∥.

Example. Here are some examples:

(i) Euclidean space R𝑛 . Recall the 𝑝 of 𝑥 ∈ R𝑛 , defined by | |𝑥 | |𝑝 =
(∑𝑛

𝑖=1 𝑥
𝑝

𝑖

) 1
𝑝 . Each 𝑝-norm

induces a metric on R𝑛 . The distance induced by the 2-norm is called the Euclidean metric
is given by 𝑑 (𝑥,𝑦) = | |𝑥 − 𝑦 | | =

(∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)2) 1

2 .

(ii) Let 𝑓 : 𝑋 → R be a continuous, bounded function. Let 𝐶𝐵(𝑋 ) denote the space of such
functions. The sup norm of 𝑓 is given by | |𝑓 | | = sup𝑥∈𝑋 |𝑓 (𝑥) |. The distance function 𝑑 (𝑓 , 𝑔) =
| |𝑓 −𝑔 | | satisfies properties (a)-(d), turning the space of continuous bounded functions𝐶𝐵(𝑋 )
into a metric space.

(iii) Any nonempty set 𝑋 can be trivially made a metric space using the discrete metric, in which
𝑑 (𝑥,𝑦) = 1 if 𝑥 ≠ 𝑦 while 𝑑 (𝑥, 𝑥) = 0.

♣

Note that as the examples suggest, it is possible to define many different metrics on the same
space. The ‘right’ metric to use is sometimes clear, but sometimes proofs proceed more easily
under one metric than another. It’s worth having this in the back of your mind.

Exercise 5.1. Let 𝑆1 = {(𝑥1, 𝑥2) ∈ R2 |𝑥2
1 + 𝑥2

2 = 1} be the unit circle and define 𝑑 (𝑥,𝑦) as the
length of the shortest arc between 𝑥 and 𝑦. Check that (𝑆1, 𝑑) is a metric space.

Definition 5.1.2. Let 𝑋 be a metric space, 𝑆 ⊆ 𝑋 , and 𝑥,𝑦 ∈ 𝑋 .

(a) The 𝑟 -neighborhood of a point 𝑥 is a set 𝑁𝑟 (𝑥) consisting of points 𝑦 such that 𝑑 (𝑥,𝑦) <
𝑟 , where 𝑟 > 0 is called the radius of 𝑁𝑟 (𝑥). A set is a neighborhood of 𝑥 if it contains
an 𝑟 neighborhood of 𝑥 for some 𝑟 > 0.

(b) A point 𝑥 is a limit point of 𝑆 if every neighborhood of 𝑥 contains a point 𝑦 ≠ 𝑥 such
that 𝑦 ∈ 𝑆 .

(c) If 𝑥 ∈ 𝑆 and 𝑥 is not a limit point of 𝑆 , then 𝑥 is said to be an isolated point of 𝑆 .
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(d) 𝑆 is closed if every limit point of 𝑆 is a point of 𝑆 .

(e) A point 𝑥 is an interior point of 𝑆 if there exists a neighborhood 𝑁 of 𝑥 such that 𝑁 ⊆ 𝑆 .
The set of interior points of 𝑆 is denoted int(𝑆).

(f) 𝑆 is open if every point of 𝑆 is an interior point of 𝑆 .

(g) 𝑆 is bounded if there exists 𝑟 > 0 and a point 𝑥 such that 𝑆 ⊆ 𝑁𝑟 (𝑥).

(h) Set 𝑆 is dense in set 𝐸 if for all 𝑥 ∈ 𝐸, every neighborhood of 𝑥 intersects with 𝑆 .

Theorem 5.1.3. Every 𝑟 -neighborhood in a metric space 𝑋 is open.

Proof. Let 𝑥 ∈ 𝑋 and let 𝑁𝑟 (𝑥) be a neighborhood of 𝑥 . For any point𝑦 ∈ 𝑁𝑟 (𝑥), letℎ = 𝑟 −𝑑 (𝑥,𝑦).
If 𝑧 ∈ 𝑁ℎ (𝑦), then we have

𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧) < 𝑟 − ℎ + ℎ = 𝑟,

which implies 𝑧 ∈ 𝑁𝑟 (𝑥). Hence, 𝑁ℎ (𝑦) ⊆ 𝑁𝑟 (𝑥). ■

Exercise 5.2. Sketch a representative 𝜀-neighborhood, 𝑁𝜀 (𝑥), in R2 under the distances induced
by the 𝑝-norm for 𝑝 = 1, 2, 3,∞. Describe a 𝜀-neighborhood under the discrete metric.

Theorem 5.1.4. Let 𝑆 be a subset of a metric space 𝑋 . If 𝑥 is a limit point of 𝑆 , then every
neighborhood of 𝑥 contains infinitely many points of 𝑆 .

Proof. Suppose there is a neighborhood 𝑁 of 𝑥 which contains a finite number of points
𝑦1, 𝑦2, . . . , 𝑦𝑛 of 𝑆 that are distinct from 𝑥 . Let 𝑟 = min{𝑑 (𝑥,𝑦𝑚)} for 1 ≤ 𝑚 ≤ 𝑛. Clearly, 𝑟 > 0.
The neighborhood 𝑁𝑟 (𝑥) contains no point of 𝑆 that are distinct from 𝑥 . This implies that 𝑥 is
not a limit point of 𝑆 . ■

Corollary 5.1.5. A finite set in a metric space has no limit points.

Example. Here are some examples and observations:

(i) (𝑎, 𝑏) is open subset of R1, but not of R2.

(ii) [𝑎, 𝑏] is a closed subset of R1.

(iii) Any finite set is closed.
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(iv) Set of all integers is a closed subset of R1.

(v) (𝑎, 𝑏] is neither open nor closed.

♣

Theorem 5.1.6. A subset 𝑆 of a metric space is open if and only if its complement is closed.

Proof. Suppose 𝑆 is open and let 𝑥 be a limit point of 𝑆𝑐 . Then every neighborhood of 𝑥 contains a
point of 𝑆𝑐 , so 𝑥 is not an interior point of 𝑆 . Hence, 𝑥 cannot be a point of 𝑆 . This implies 𝑥 ∈ 𝑆𝑐 ,
so 𝑆𝑐 is closed.

Conversely, suppose 𝑆𝑐 is closed and let 𝑥 ∈ 𝑆 . Then 𝑥 is not in 𝑆𝑐 , so 𝑥 cannot be a limit point
of 𝑆𝑐 . Thus, there exists a neighborhood 𝑁 of 𝑥 that contains no point of 𝑆𝑐 . This implies 𝑁 ⊆ 𝑆 ,
so 𝑆 is open. ■

Theorem 5.1.7. All sets mentioned below are understood to be subsets of a metric space.

(a) For any collection {𝐺𝛼 } of open sets,
⋃
𝛼 𝐺𝛼 is open.

(b) For any collection {𝐹𝛼 } of closed sets,
⋂
𝛼 𝐹𝛼 is closed.

(c) For any finite collection 𝐺1, . . . ,𝐺𝑛 of open sets,
⋂𝑛
𝑖=1𝐺𝑖 is open.

(d) For any finite collection 𝐹1, . . . , 𝐹𝑛 of closed sets,
⋃𝑛
𝑖=1 𝐹𝑖 is closed.

Proof. Let 𝑥 ∈ ⋃
𝛼 𝐺𝛼 . Then 𝑥 is an interior point of 𝐺𝛼 for some 𝛼 , and hence of the union. This

proves (a).
By DeMorgan’s law, (⋂𝛼 𝐹𝛼 )𝑐 =

⋃
𝛼 𝐹

𝑐
𝛼 . By Theorem 5.1.6, each 𝐹𝑐𝛼 is open. Hence, (b) follows

from (a).
Let 𝑥 ∈ ⋂𝑛

𝑖=1𝐺𝑖 . Then there exists 𝑟𝑖 such that 𝑁𝑟𝑖 (𝑥) ⊆ 𝐺𝑖 for 𝑖 = 1, 2, . . . , 𝑛. Let 𝑟 =

min(𝑟1, 𝑟2, . . . , 𝑟𝑛). Then 𝑁𝑟 (𝑥) ⊆ 𝐺𝑖 for all 𝑖 = 1, 2, . . . , 𝑛, so 𝑁𝑟 (𝑥) ⊆
⋂𝑛
𝑖=1𝐺𝑖 . This proves (c).

Taking complements,
(⋃𝑛

𝑖=1 𝐹𝑖
)𝑐

=
⋂𝑛
𝑖=1(𝐹𝑐𝑖 ) . Thus, (d) follows from (c). ■

The finiteness in (c) and (d) is essential. To see that, let𝐺𝑛 =
(
− 1
𝑛
, 1
𝑛

)
. Then𝐺 = ∩∞

𝑛=1𝐺𝑛 = {0}
which is not an open subset of R1. Let 𝐹𝑛 =

[ 1
𝑛
, 2 − 1

𝑛

]
. Then 𝐹 = ∪∞

𝑛=1𝐹𝑛 = (0, 2), which is not
closed.

Definition 5.1.8. Let 𝑋 be a metric space and let 𝐸 ⊆ 𝑋 . If 𝐸′ denotes the set of limit points
of 𝐸 in 𝑋 , then the closure of 𝐸 is the set 𝐸 = 𝐸 ∪ 𝐸′.
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Theorem 5.1.9. Let 𝐸 be a subset of a metric space 𝑋 . Then

(a) 𝐸 is closed;

(b) 𝐸 = 𝐸 if and only if 𝐸 is closed;

(c) 𝐸 ⊆ 𝐹 for every closed set 𝐹 ⊆ 𝑋 such that 𝐸 ⊆ 𝐹 .

Proof. (a) We show that 𝐸𝑐 is open. Let 𝑥 ∈ 𝐸𝑐 . Then 𝑥 is neither a point of 𝐸 nor a limit point of
𝐸. Thus 𝑥 has a neighborhood 𝑁 such that 𝑁 ⊆ 𝐸𝑐 . But since 𝑁 is open, every point of 𝑁 is
also an interior point of 𝑁 , and therefore an interior point of 𝐸𝑐 , and consequently cannot be
a limit point of 𝐸. This means that 𝑁 ⊆ (𝐸′)𝑐 , so 𝑁 ⊆ 𝐸𝑐 . Thus, 𝐸𝑐 is open.

(b) If 𝐸 = 𝐸, then 𝐸 is closed by (a). If 𝐸 is closed, then 𝐸′ ⊆ 𝐸, so 𝐸 ⊆ 𝐸. Hence 𝐸 = 𝐸.

(c) Let 𝐹 ⊆ 𝑋 be a closed set such that 𝐸 ⊆ 𝐹 . If 𝑥 ∈ 𝐸′, then every neighbourhood of 𝑥 contains
some point of 𝐸, and hence of 𝐹 . Thus, 𝑥 ∈ 𝐹 ′. But 𝐹 is closed, so 𝐹 ′ ⊆ 𝐹 , and hence 𝑥 ∈ 𝐹 .
Therefore, 𝐸′ ⊆ 𝐹 , and 𝐸 ⊆ 𝐹 .

■

Theorem 5.1.10. Let 𝐸 be a nonempty set of real numbers which is bounded above. Let 𝑦 =

sup𝐸. Then 𝑦 ∈ 𝐸. Hence 𝑦 ∈ 𝐸 if 𝐸 is closed.

Proof. If 𝑦 ∈ 𝐸, then 𝑦 ∈ 𝐸, so assume 𝑦 ∉ 𝐸. Since 𝑦 is the supremum, for every 𝜀 > 0 there exists
some 𝑥 ∈ 𝐸 such that 𝑦 − 𝜀 < 𝑥 < 𝑦. But this means 𝑦 is a limit point of 𝐸. Hence 𝑦 ∈ 𝐸. ■

Exercise 5.3. Let 𝑆 and 𝐸 be subsets of a metric space 𝑋 and 𝑆 ⊆ 𝐸. Establish the following
equivalences:

(i) 𝑆 is dense in 𝐸.

(ii) int(𝑋 \ 𝑆) = ∅.

(iii) 𝑆 = 𝐸.



82 5 Metric Spaces, Sequences and Compactness

5.2 Sequences

Definition 5.2.1. A sequence is a function defined on the set of positive integers N. If
𝑓 (𝑛) = 𝑝𝑛 for 𝑛 ∈ N, we often denote the sequence by {𝑝𝑛} or by 𝑝1, 𝑝2, 𝑝3, . . .. The elements
𝑝𝑛 are called the terms of the sequence. If 𝑆 is a set and 𝑝𝑛 ∈ 𝑆 for all 𝑛, then we say that {𝑝𝑛}
is a sequence in 𝑆 . A sequence is said to be bounded if its range is bounded.

5.2.1 Convergent sequences

Definition 5.2.2. A sequence {𝑝𝑛} in a metric space 𝑋 is said to converge if there exists a
point 𝑝 ∈ 𝑋 such that, for every 𝜀 > 0, there exists a positive integer 𝑁 such that 𝑛 ≥ 𝑁

implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀. In this case, we may also say that {𝑝𝑛} converges to 𝑝 , or that 𝑝 is the
limit of {𝑝𝑛}, and write 𝑝𝑛 → 𝑝 , or lim𝑛→∞ 𝑝𝑛 = 𝑝 . If a sequence does not converge, it is said
to diverge.

Whether a sequence converges depends not only on {𝑝𝑛} but also on 𝑋 . For instance, {1/𝑛}
converges in R to 0, but fails to converges in the set of all positive real numbers, R++ = (0,∞)

Example. Here are some examples in R:

(i) If 𝑝𝑛 = 1
𝑛
, the sequence is convergent with lim𝑛→∞ 𝑝𝑛 = 0. The range is infinite, and the

sequence is bounded.

(ii) If 𝑝𝑛 = 𝑛2, the sequence {𝑝𝑛} is unbounded, divergent, and has infinite range.

(iii) If 𝑝𝑛 = 1, then {𝑝𝑛} converges to 1, is bounded, and has finite range.

♣

Theorem 5.2.3. Let {𝑝𝑛} be a sequence in a metric space 𝑋 . Then we have:

(a) {𝑝𝑛} converges to 𝑝 if and only if every neighborhood of 𝑝 contains all but finitely many of
the terms of {𝑝𝑛}.

(b) If 𝑝𝑛 → 𝑝 and 𝑝𝑛 → 𝑝′, then 𝑝 = 𝑝′.

(c) If {𝑝𝑛} converges, then {𝑝𝑛} is bounded.
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Proof. (a) Suppose 𝑝𝑛 → 𝑝 and let 𝑁𝜀 be a neighborhood of 𝑝 with given radius 𝜀 > 0. For any
𝑦 ∈ 𝑋 , 𝑑 (𝑦, 𝑝) < 𝜀 implies 𝑦 ∈ 𝑁𝜀 . Corresponding to this 𝜀, there exists 𝑁 such that 𝑛 ≥ 𝑁

implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀. Thus, 𝑝𝑛 ∈ 𝑁𝜀 whenever 𝑛 ≥ 𝑁 .

Conversely, suppose every neighborhood of 𝑥 contains all but finitely many of the terms of
{𝑝𝑛}. Given 𝜀 > 0, let 𝑁𝜀 be a neighborhood of 𝑝 with radius 𝜀. Since 𝑁𝜀 contains all but
finitely many of the 𝑝𝑛 , there exists 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑝𝑛 ∈ 𝑁𝜀 . Hence, we have
𝑑 (𝑝𝑛, 𝑝) < 𝜀 whenever 𝑛 ≥ 𝑁 , so 𝑝𝑛 → 𝑝 .

(b) Suppose 𝑝𝑛 → 𝑝 and 𝑝𝑛 → 𝑝′. Then for any 𝜀 > 0, there exists 𝑁 and 𝑁 ′ such that 𝑛 ≥ 𝑁

implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀/2 and 𝑛 ≥ 𝑁 ′ implies 𝑑 (𝑝𝑛, 𝑝′) < 𝜀/2. Take 𝑛 ≥ max{𝑁, 𝑁 ′}. Then

0 ≤ 𝑑 (𝑝, 𝑝′) ≤ 𝑑 (𝑝, 𝑝𝑛) + 𝑑 (𝑝𝑛, 𝑝′) < 𝜀.

Since 𝜀 was arbitrary, 𝑑 (𝑝, 𝑝′) = 0.

(c) Suppose 𝑝𝑛 → 𝑝 . Then there exists 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑑 (𝑝𝑛, 𝑝) < 1. Let

𝑟 = 1 + max{𝑑 (𝑝1, 𝑝), 𝑑 (𝑝2, 𝑝), . . . , 𝑑 (𝑝𝑁−1, 𝑝)}.

Then 𝑑 (𝑝𝑛, 𝑝) < 𝑟 for all 𝑛. Thus, 𝑝𝑛 ∈ 𝑁𝑟 (𝑝) for all 𝑛.
■

Theorem 5.2.4. Let 𝑆 be a subset of a metric space 𝑋 . Then 𝑝 ∈ 𝑋 is a limit point of 𝑆 if and
only if there exists a sequence {𝑝𝑛} in 𝑆 with 𝑝𝑛 ≠ 𝑝 that converges to 𝑝 .

Proof. Suppose 𝑝 is a limit point of 𝑆 . Then for every 𝑛, there exists a point 𝑝𝑛 ∈ 𝑆 distinct from
𝑝 such that 𝑑 (𝑝𝑛, 𝑝) < 1/𝑛. Given 𝜀 > 0, there exists a positive integer 𝑁 such that 𝑁𝜀 > 1. It
follows that 𝑑 (𝑝𝑛, 𝑝) < 𝜀 whenever 𝑛 ≥ 𝑁 . Hence, 𝑝𝑛 → 𝑝 .

Conversely, let {𝑝𝑛} be a sequence in 𝑆 such that 𝑝𝑛 → 𝑝 and 𝑝𝑛 ≠ 𝑝 . Then for any 𝜀 > 0,
there is 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀. Thus, 𝑝𝑛 ∈ 𝑁𝜀 (𝑝) whenever 𝑛 ≥ 𝑁 . ■

Theorem 5.2.5. A subset 𝑆 of a metric space𝑋 is closed if and only if every convergent sequence
in 𝑆 has its limit in 𝑆 .

Proof. Suppose 𝑆 is closed and let {𝑝𝑛} be a sequence in 𝑆 with limit 𝑝 . For any 𝜀 > 0, there is 𝑁
such that 𝑛 ≥ 𝑁 implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀. If 𝑝𝑛 ≠ 𝑝 , then 𝑝 is a limit point of 𝑆 and hence is a point of
𝑆 . If 𝑝𝑛 = 𝑝 for some 𝑛, 𝑝 ∈ 𝑆 since {𝑝𝑛} is a sequence in 𝑆 .

Conversely, suppose every convergent sequence in 𝑆 has its limit in 𝑆 . Let 𝑝 be a limit point
of 𝑆 . By Theorem 5.2.4, there exists a sequence {𝑝𝑛} in 𝑆 that converges to 𝑝 . This implies 𝑝 is a
point of 𝑆 , so 𝑆 is closed. ■
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Definition 5.2.6. Let {𝑝𝑛} be a sequence in a metric space 𝑋 and let {𝑛𝑖} be a sequence
in N with the property that 𝑛1 < 𝑛2 < 𝑛3 < · · · . Then the sequence {𝑝𝑛𝑖 } is said to be a
subsequence of {𝑝𝑛}. If {𝑝𝑛𝑖 } converges, its limit is called a subsequential limit of {𝑝𝑛}.

Theorem 5.2.7. Let {𝑝𝑛} be a sequence in a metric space 𝑋 . Then {𝑝𝑛} converges to 𝑝 if and
only if every subsequence of {𝑝𝑛} converges to 𝑝 .

Proof. Suppose 𝑝𝑛 → 𝑝 and let {𝑝𝑛𝑖 } be a subsequence of {𝑝𝑛}. Given 𝜀 > 0, there exists 𝑁 such
that 𝑛 ≥ 𝑁 implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀. Let 𝑘 be the smallest integer such that 𝑛𝑘 ≥ 𝑁 . Then we have
𝑑 (𝑝𝑛𝑖 , 𝑝) < 𝜀 whenever 𝑖 ≥ 𝑘 . Thus, {𝑝𝑛𝑖 } converges. The converse holds trivially since {𝑝𝑛} is a
subsequence of itself. ■

Exercise 5.4. Let 𝑓𝑛 ∈ 𝐵( [0, 1]) be defined as 𝑓𝑛 (𝑡) = 𝑡𝑛 for 𝑛 = 1, 2, ....

(a) Let 𝑥 ∈ [0, 1]. Does the sequence (𝑓𝑛 (𝑥)) converge in the Euclidean metric?

(b) Does the sequence (𝑓𝑛) converge in the sup-metric on 𝐵( [0, 1])?

5.2.2 Cauchy sequences

Definition 5.2.8. A sequence {𝑝𝑛} in a metric space 𝑋 is said to be a Cauchy sequence if
for every 𝜀 > 0, there exists a positive integer 𝑁 such that 𝑑 (𝑝𝑛, 𝑝𝑚) < 𝜀 whenever 𝑛 ≥ 𝑁

and𝑚 ≥ 𝑁 .

Theorem 5.2.9. Let {𝑝𝑛} be a sequence in a metric space 𝑋 . Then we have:

(a) If {𝑝𝑛} converges, then {𝑝𝑛} is a Cauchy sequence.

(b) If {𝑝𝑛} is a Cauchy sequence and a subsequence {𝑝𝑛𝑖 } of {𝑝𝑛} converges to 𝑝 , then {𝑝𝑛} also
converges to 𝑝 .

(c) If {𝑝𝑛} is a Cauchy sequence, then {𝑝𝑛} is bounded.

Proof. (a) Suppose 𝑝𝑛 → 𝑝 and let 𝜀 > 0. There exists 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑑 (𝑝𝑛, 𝑝) < 𝜀/2.
It follows that

𝑑 (𝑝𝑛, 𝑝𝑚) ≤ 𝑑 (𝑝𝑛, 𝑝) + 𝑑 (𝑝, 𝑝𝑚) < 𝜀

whenever 𝑛 ≥ 𝑁 and𝑚 ≥ 𝑁 . Hence, {𝑝𝑛} is a Cauchy sequence.
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(b) Since {𝑝𝑛} is a Cauchy sequence, there is, for any 𝜀 > 0, an integer 𝑁1 such that 𝑛 ≥ 𝑁1

and 𝑚 ≥ 𝑁1 imply 𝑑 (𝑝𝑛, 𝑝𝑚) < 𝜀/2. Since 𝑝𝑛𝑖 → 𝑝 , there is 𝑁2 such that 𝑛𝑖 ≥ 𝑁2 implies
𝑑 (𝑝𝑛𝑖 , 𝑝) < 𝜀/2. Let 𝑁 = max{𝑁1, 𝑁2}. Then for 𝑛 ≥ 𝑁 , we have

𝑑 (𝑝𝑛, 𝑝) ≤ 𝑑 (𝑝𝑛, 𝑝𝑛𝑖 ) + 𝑑 (𝑝𝑛𝑖 , 𝑝) < 𝜀,

for any 𝑛𝑖 ≥ 𝑁 . Thus, {𝑝𝑛} converges to 𝑝 .

(c) Since {𝑝𝑛} is a Cauchy sequence, there exists 𝑁 such that 𝑑 (𝑝𝑛, 𝑝𝑚) < 1 for 𝑛 ≥ 𝑁 and𝑚 ≥ 𝑁 .
Let

𝑟 = 1 + max{𝑑 (𝑝1, 𝑝𝑁 ), 𝑑 (𝑝2, 𝑝𝑁 ), . . . , 𝑑 (𝑝𝑁−1, 𝑝𝑁 )}.

Then 𝑑 (𝑝𝑛, 𝑝𝑁 ) < 𝑟 for all 𝑛. Hence, {𝑝𝑛} is bounded.
■

Exercise 5.5. True or false: if for each 𝜀 > 0, there is an 𝑁 such that for all𝑚 ≥ 𝑁 , successive
terms satisfy 𝑑 (𝑥𝑚, 𝑥𝑚+1) ≤ 𝜀, then {𝑥𝑛} is Cauchy.

5.2.3 Real sequences

Definition 5.2.10. A sequence {𝑥𝑛} of real numbers is said to be

(a) increasing if 𝑥𝑛 ≤ 𝑥𝑛+1 for all 𝑛;

(b) decreasing if 𝑥𝑛 ≥ 𝑥𝑛+1 for all 𝑛.

If {𝑥𝑛} is increasing or decreasing, then {𝑥𝑛} is said to bemonotonic.

Theorem 5.2.11. A monotonic sequence converges if and only if it is bounded.

Proof. Let {𝑥𝑛} be a real sequence that is increasing and bounded; the proof for decreasing
sequences is analogous. Let 𝐴 be the range of {𝑥𝑛} and let 𝑥 = sup𝐴. Given 𝜀 > 0, there exists 𝑁
such that 𝑥𝑁 ∈ 𝐴 and 𝑥 − 𝜀 < 𝑥𝑁 ≤ 𝑥 . Since {𝑥𝑛} increases, 𝑛 ≥ 𝑁 implies 𝑥 − 𝜀 < 𝑥𝑛 ≤ 𝑥 .
Hence, {𝑥𝑛} converges to 𝑥 . The converse follows from Theorem 5.2.3c. ■

Theorem 5.2.12. Every real sequence contains a monotonic subsequence.

Proof. Let {𝑥𝑛} be a sequence of real numbers. Let 𝐾 be the set of positive integers 𝑘 such that
𝑥𝑘 > 𝑥𝑛 for all 𝑛 > 𝑘 . If 𝐾 is infinite, then the subsequence {𝑥𝑛𝑖 } with 𝑛𝑖 ∈ 𝐾 is decreasing.
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Suppose 𝐾 is finite. If 𝐾 is nonempty, sup𝐾 exists. Let 𝑁 = sup𝐾 and let 𝑛1 = 𝐾 + 1. If 𝐾 is
empty, let 𝑛1 = 1. In either case, 𝑛1 ∉ 𝐾 , so there exists 𝑛2 > 𝑛1 such that 𝑥𝑛1 ≤ 𝑥𝑛2 . Similarly,
there is 𝑛3 > 𝑛2 such that 𝑥𝑛2 ≤ 𝑥𝑛3 . Continuing the process, we obtain a sequence {𝑛𝑖} such that
{𝑥𝑛𝑖 } is increasing. ■

Theorem 5.2.13 (Bolzano-Weierstrass). Every bounded real sequence has a convergent
subsequence.

Proof. Let {𝑥𝑛} be a bounded sequence of real numbers. Then {𝑥𝑛} contains a monotonic
subsequence {𝑥𝑛𝑖 } that is also bounded. Hence, by Theorem 5.2.11, {𝑥𝑛𝑖 } converges. ■

Theorem 5.2.14. Let {𝒙𝑛} be a sequence in R𝑘 and 𝒙𝑛 = (𝑥1,𝑛, 𝑥2,𝑛, . . . , 𝑥𝑘,𝑛). Then {𝒙𝑛}
converges to 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) if and only if 𝑥 𝑗,𝑛 → 𝑥 𝑗 for all 𝑗 = 1, 2, . . . , 𝑘 .

Proof. Suppose 𝒙𝑛 → 𝒙 . Since

0 ≤
𝑥 𝑗,𝑛 − 𝑥 𝑗 ≤ ∥𝒙𝑛 − 𝒙 ∥ ,

we have 𝑥 𝑗,𝑛 → 𝑥 𝑗 for all 𝑗 = 1, 2, . . . , 𝑘 .
Conversely, suppose 𝑥 𝑗,𝑛 → 𝑥 𝑗 for all 𝑗 = 1, 2, . . . , 𝑘 . Then for each 𝜀 > 0 there is 𝑁 𝑗 such that

𝑛 ≥ 𝑁 𝑗 implies 𝑥 𝑗,𝑛 − 𝑥 𝑗 <
𝜀
√
𝑘
,

for 𝑗 = 1, 2, . . . , 𝑘 . Let 𝑁 = max{𝑁1, 𝑁2, . . . , 𝑁𝑘 }. Then 𝑛 ≥ 𝑁 implies

∥𝒙𝑛 − 𝒙 ∥ =
(
𝑘∑︁
𝑗=1

𝑥 𝑗,𝑛 − 𝑥 𝑗2
)1/2

< 𝜀.

Thus, {𝒙𝑛} converges to 𝒙 . ■

Theorem 5.2.15. Every bounded sequence in R𝑘 has a convergent subsequence.

Proof. We prove by induction. Theorem 5.2.13 establishes the case for 𝑘 = 1. Next, suppose every
bounded sequence in R𝑘 has a convergent subsequence. Let {𝒙𝑛} be a bounded sequence in R𝑘+1.
Write 𝒙𝑛 = (𝒚𝑛, 𝑧𝑛), where {𝒚𝑛} is a sequence in R𝑘 and {𝑧𝑛} is a sequence in R. By the induction
hypothesis, {𝒚𝑛} has a convergent subsequence {𝒚𝑛𝑖 }. The sequence {𝑛𝑖} so obtained gives a
subsequence {𝑧𝑛𝑖 } of {𝑧𝑛}, which itself contains a convergent subsequence {𝑧𝑛𝑖 𝑗 }. Since {𝒚𝑛𝑖 }
converges, the subsequence {𝒚𝑛𝑖 𝑗 } also converges. Hence, by Theorem 5.2.14, the subsequence
{𝒙𝑛𝑖 𝑗 } converges. ■
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Theorem 5.2.16. Suppose {𝑝𝑛} and {𝑠𝑛} are real sequences, and lim𝑛→∞ 𝑝𝑛 = 𝑝 , lim𝑛→∞ 𝑠𝑛 =

𝑠 . Then

(a) lim𝑛→∞(𝑝𝑛 + 𝑠𝑛) = 𝑝 + 𝑠 ;

(b) lim𝑛→∞ 𝑐𝑝𝑛 = 𝑐𝑝 , lim𝑛→∞(𝑐 + 𝑝𝑛) = 𝑐 + 𝑝 for any real number 𝑐 ;

(c) lim𝑛→∞ 𝑝𝑛𝑠𝑛 = 𝑝𝑠 ;

(d) lim𝑛→∞
1
𝑝𝑛

= 1
𝑝
provided that 𝑝𝑛 ≠ 0 (𝑛 = 1, .2, ...) and 𝑝 ≠ 0.

Proof. (a) Given 𝜀 > 0, there exist integers 𝑁1, 𝑁2 such that

𝑛 ≥ 𝑁1 → |𝑝𝑛 − 𝑝 | <
𝜀

2
𝑛 ≥ 𝑁2 → |𝑠𝑛 − 𝑠 | <

𝜀

2

Let 𝑁 = max(𝑁1, 𝑁2). Then 𝑛 ≥ 𝑁 implies

| (𝑝𝑛 + 𝑠𝑛) − (𝑝 + 𝑠) | ≤ |𝑝𝑛 − 𝑝 | + |𝑠𝑛 − 𝑠 | < 𝜀

(b) Trivial.

(c) Observe that

𝑝𝑛𝑠𝑛 − 𝑝𝑠 = (𝑝𝑛 − 𝑝) (𝑠𝑛 − 𝑠) + 𝑝 (𝑠𝑛 − 𝑠) + 𝑠 (𝑝𝑛 − 𝑝)

Given 𝜀 > 0, there exist integers 𝑁1, 𝑁2 such that

𝑛 ≥ 𝑁1 → |𝑝𝑛 − 𝑝 | <
√
𝜀

𝑛 ≥ 𝑁2 → |𝑠𝑛 − 𝑠 | <
√
𝜀

Let 𝑁 = max(𝑁1, 𝑁2). Then 𝑛 ≥ 𝑁 implies
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| (𝑝𝑛 − 𝑝) (𝑠𝑛 − 𝑠) | < 𝜀

and so lim𝑛→∞(𝑝𝑛−𝑝) (𝑠𝑛−𝑠) = 0. By (a) and (b), lim𝑛→∞ 𝑝 (𝑠𝑛−𝑠) = 0 and lim𝑛→∞ 𝑠 (𝑝𝑛−𝑝) = 0,
and hence by (a) lim𝑛→∞(𝑝𝑛−𝑝) (𝑠𝑛−𝑠)+𝑝 (𝑠𝑛−𝑠)+𝑠 (𝑝𝑛−𝑝) = 0. Therefore lim𝑛→∞(𝑝𝑛𝑠𝑛−𝑝𝑠) =
0.

(d) Choose 𝑚 such that |𝑝𝑛 − 𝑝 | < 1
2 |𝑝 | if 𝑛 ≥ 𝑚. Then |𝑝𝑛 − 𝑝 | ≥ |𝑝 | − |𝑝𝑛 |, which implies

|𝑝𝑛 | > 1
2 |𝑝 | for 𝑛 ≥ 𝑚.

Given 𝜀 > 0, there is an integer 𝑁 > 𝑚 such that 𝑛 ≥ 𝑁 implies

|𝑝𝑛 − 𝑝 | <
1
2
|𝑝 |2𝜀

Hence, for 𝑛 ≥ 𝑁 ,

���� 1
𝑝𝑛

− 1
𝑝

���� = ����𝑝𝑛 − 𝑝𝑝𝑛𝑝

���� < 2
|𝑝 |2 |𝑝𝑛 − 𝑝 | < 𝜀

■

Definition 5.2.17. Let {𝑝𝑛} be a sequence of real numbers with the following property: For
every real𝑀 there is an integer 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑝𝑛 ≥ 𝑀 . Then we write 𝑝𝑛 → ∞.
Similarly, if for every real𝑀 there is an integer 𝑁 such that 𝑛 ≥ 𝑁 implies 𝑝𝑛 ≤ 𝑀 , we write
𝑝𝑛 → −∞.

Definition 5.2.18. Let {𝑝𝑛} be a sequence of real numbers. Let 𝐸 be the set of numbers 𝑥 (in
the extended real number system R ∪ {−∞, +∞}) such that 𝑝𝑛𝑘 → 𝑥 for some subsequence
{𝑝𝑛𝑘 }. Let 𝑝∗ = sup𝐸 and 𝑝∗ = inf 𝐸. Equivalently, lim sup𝑛→∞ 𝑝𝑛 = 𝑝∗ and lim inf𝑛→∞ 𝑝𝑛 =

𝑝∗.

Corollary 5.2.19. A real sequence {𝑝𝑛} converges if and only if
lim sup𝑛→∞ 𝑝𝑛 = lim inf𝑛→∞ 𝑝𝑛 .
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Exercise 5.6 (Squeeze Principle). Let (𝑥𝑛), (𝑦𝑛) and (𝑧𝑛) be real sequences with 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 .
Show that if lim𝑥𝑛 = lim 𝑧𝑛 = 𝐿, then lim𝑦𝑛 = 𝐿.

5.3 Completeness

Definition 5.3.1. A subset 𝑆 of a metric space 𝑋 is said to be complete if every Cauchy
sequence in 𝑆 converges in 𝑆 . A complete normed space is called a Banach space, while a
complete inner product space is called a Hilbert space.

Theorem 5.3.2. Let 𝑆 be a subset of a metric space 𝑋 . Then we have:

(a) If 𝑆 is complete, then 𝑆 is closed.

(b) If 𝑆 is closed and 𝑋 is complete, then 𝑆 is complete.

Proof. (a) Let {𝑝𝑛} be a convergent sequence in 𝑆 with limit 𝑝 ∈ 𝑋 . Since {𝑝𝑛} is also Cauchy and
𝑆 is complete, {𝑝𝑛} converges in 𝑆 . Hence, by Theorem 5.2.5, 𝑆 is closed.

(b) Let {𝑝𝑛} be a Cauchy sequence in 𝑆 . Since 𝑋 is complete, {𝑝𝑛} converges to a point 𝑝 ∈ 𝑋 . It
follows that 𝑝 ∈ 𝑆 since 𝑆 is closed. Thus, 𝑆 is complete.

■

Corollary 5.3.3. A subset 𝑆 of a complete metric space is complete if and only if it is closed.

Theorem 5.3.4. R is complete with respect to the Euclidean metric.

Proof. Let {𝑥𝑛} be a Cauchy sequence in R. By Theorem 5.2.9c, {𝑥𝑛} is bounded. Hence, Theorem
5.2.13 implies that there is a subsequence {𝑥𝑛𝑖 } of {𝑥𝑛} that converges to some real number 𝑥 . By
Theorem 5.2.9b, {𝑥𝑛} also converges to 𝑥 . Hence, R is complete. ■

In fact, this would have been an equivalent way to construct R: as the completion of the
rational numbers (the smallest superset of Q such that all Cauchy sequences converge).

Theorem 5.3.5. R𝑘 is complete with respect to the Euclidean metric.
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Proof. Let {𝒙𝑛} be a Cauchy sequence in R𝑘 and 𝒙𝑛 = (𝑥1,𝑛, 𝑥2,𝑛, . . . , 𝑥𝑘,𝑛). Given 𝜀 > 0, there is 𝑁
such that 𝑛 ≥ 𝑁 and𝑚 ≥ 𝑁 imply𝑥 𝑗,𝑛 − 𝑥 𝑗,𝑚 ≤ ∥𝒙𝑛 − 𝒙𝑚 ∥ < 𝜀,

for 𝑗 = 1, 2, . . . , 𝑘 . Hence, each real sequence {𝑥 𝑗,𝑛} is a Cauchy sequence. Since R is complete,
{𝑥 𝑗,𝑛} converges to some real number 𝑥 𝑗 for all 𝑗 = 1, 2, . . . , 𝑘 . Hence, by Theorem 5.2.14, {𝒙𝑛}
converges to 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑘 ). ■

5.4 Total boundedness

Definition 5.4.1. A subset 𝑆 of a metric space 𝑋 is said to be totally bounded if for every
𝜀 > 0, there exists a finite subset 𝑇 of 𝑆 such that 𝑆 ⊆ ⋃

𝑥∈𝑇 𝑁𝜀 (𝑥).

Theorem 5.4.2. A subset 𝑆 of a metric space 𝑋 is totally bounded if and only if every sequence
in 𝑆 has a Cauchy subsequence.

Proof. Suppose 𝑆 is totally bounded. Let 𝑇𝑘 be the finite set of points of 𝑆 such that
𝑆 ⊆ ⋃

𝑥∈𝑇𝑘 𝑁1/𝑘 (𝑥) and let {𝑝𝑛} be a sequence in 𝑆 . Since 𝑇1 is finite, there exists at least one
point 𝑥 ∈ 𝑇1 such that 𝑁1(𝑥) contains a subsequence {𝑞1,𝑛} of {𝑝𝑛}. Similarly, at least one point
𝑥 ∈ 𝑇2 has the property that 𝑁1/2(𝑥) contains a subsequence {𝑞2,𝑛} of {𝑞1,𝑛}. Continuing the
process, we obtain sequences {𝑞1,𝑛}, {𝑞2,𝑛}, . . . such that 𝑑 (𝑞𝑘,𝑖 , 𝑞𝑘,𝑗 ) < 1/𝑘 for all 𝑘 and for all 𝑖, 𝑗 .
Then the sequence {𝑞𝑘,𝑘 } has the property that for every 𝜀 > 0, there exists 𝑁 such that 𝑖 ≥ 𝑁

and 𝑗 ≥ 𝑁 imply 𝑑 (𝑞𝑖,𝑖 , 𝑞 𝑗, 𝑗 ) < 1/𝑁 < 𝜀, since both 𝑞𝑖,𝑖 and 𝑞 𝑗, 𝑗 are elements of the sequence
{𝑞𝑁,𝑛}. Thus, {𝑞𝑘,𝑘 } is a Cauchy subsequence of {𝑝𝑛}.

Conversely, suppose 𝑆 is not totally bounded. This implies that there is 𝜀 > 0 such that for
every finite subset 𝑇 of 𝑆 ,

⋃
𝑥∈𝑇 𝑁𝜀 (𝑥) cannot contain 𝑆 . Let 𝑝1 be a point in 𝑆 . Then 𝑁𝜀 (𝑝1)

cannot contain 𝑆 , so there must exists a point 𝑝2 ∈ 𝑆 such that 𝑑 (𝑝1, 𝑝2) ≥ 𝜀. But 𝑁𝜀 (𝑝1) ∪ 𝑁𝜀 (𝑝2)
also cannot contain 𝑆 , so there is a point 𝑝3 ∈ 𝑆 such that 𝑑 (𝑝𝑘 , 𝑝3) ≥ 𝜀 for 𝑘 = 1, 2. Continuing
the process, we obtain a sequence {𝑝𝑛} with the property that 𝑑 (𝑝𝑚, 𝑝𝑛) ≥ 𝜀 for all distinct𝑚,𝑛.
Clearly, no subsequence of {𝑝𝑛} can be a Cauchy sequence. ■
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Theorem 5.4.3. Let 𝑆 be a subset of a metric space𝑋 . If 𝑆 is totally bounded, then 𝑆 is bounded.

Proof. Suppose 𝑆 is totally bounded. Then there is a finite number of points 𝑥1, 𝑥2, . . . , 𝑥𝑘 of 𝑆 such
that 𝑆 ⊆ ⋃𝑘

𝑗=1 𝑁1(𝑥 𝑗 ). Choose 𝑥𝑚 and 𝑥𝑛 such that 𝑑 (𝑥𝑚, 𝑥𝑛) ≥ 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) for all 𝑖, 𝑗 = 1, 2, . . . , 𝑘 ,
and let 𝑟 = 1 + 𝑑 (𝑥𝑚, 𝑥𝑛). For any 𝑥 ∈ 𝑆 , 𝑥 ∈ 𝑁1(𝑥 𝑗 ) for some 𝑗 . Thus we have

𝑑 (𝑥, 𝑥𝑚) ≤ 𝑑 (𝑥, 𝑥 𝑗 ) + 𝑑 (𝑥 𝑗 , 𝑥𝑚) < 𝑟 .

Hence, 𝑥 ∈ 𝑁𝑟 (𝑥𝑚) for all 𝑥 ∈ 𝑆 , so 𝑆 is bounded. ■

Theorem 5.4.4. A subset 𝑆 of R𝑘 is bounded if and only if it is totally bounded.

Proof. Suppose 𝑆 is bounded and let {𝒙𝑛} be a sequence in 𝑆 . By Theorem 5.2.15, {𝒙𝑛} has a
convergent subsequence {𝒙𝑛𝑖 }. Since every convergent sequence is a Cauchy sequence, {𝒙𝑛𝑖 }
is a Cauchy subsequence of {𝒙𝑛}. Hence, by Theorem 5.4.2, 𝑆 is totally bounded. The converse
follows from Theorem 5.4.3. ■

5.5 Compactness

Definition 5.5.1. Let 𝑆 be a subset of a metric space 𝑋 and let {𝐺𝛼 } be a collection of open
subsets of 𝑋 . If 𝑆 ⊆ ⋃

𝛼 𝐺𝛼 , then we say that {𝐺𝛼 } covers 𝑆 or that {𝐺𝛼 } is an open cover of
𝑆 . A subset of {𝐺𝛼 } that also covers 𝐸 is called a subcover.

Definition 5.5.2. A subset 𝑆 of a metric space𝑋 is compact if every open cover of 𝑆 contains
a finite subcover.

Definition 5.5.3. Let 𝑆 be a subset of a metric space 𝑋 .

(a) 𝑆 is limit point compact if every infinite subset of 𝑆 has a limit point in 𝑆 .

(b) 𝑆 is sequentially compact if every sequence in 𝑆 has a convergent subsequence whose
limit lies in 𝑆 .
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Theorem 5.5.4. Let 𝑋 be a metric space. Then the following statements are equivalent:

(a) 𝑋 is compact.

(b) 𝑋 is limit point compact.

(c) 𝑋 is sequentially compact.

(d) 𝑋 is complete and totally bounded.

Proof. First, suppose 𝑋 is compact. Let 𝑆 be an infinite subset of 𝑋 and suppose 𝑆 has no limit
point in𝑋 . Then for each 𝑥 ∈ 𝑋 , there exists a neighborhood𝑉𝑥 that contains at most one element
of 𝑆 . It is clearly that no finite subcollection of {𝑉𝑥 } can cover 𝑆 , and hence 𝑋 . This contradicts
the compactness of 𝑋 . Hence, (a) implies (b).

Next, suppose 𝑋 is limit point compact and {𝑝𝑛} be a sequence in 𝑋 . Let 𝑆 be the range of
{𝑝𝑛}. If 𝑆 is finite, then there exists 𝑝 ∈ 𝑆 and a sequence {𝑛𝑖} with 𝑛1 < 𝑛2 < 𝑛3 < · · · such that
𝑝𝑛1 = 𝑝𝑛2 = 𝑝𝑛3 = · · · = 𝑝 . A subsequence {𝑝𝑛𝑖 } thus obtained converges to 𝑝 . If 𝑆 is infinite, 𝑆 has
a limit point 𝑝 ∈ 𝑋 . Hence for any positive integer 𝑖 , there is 𝑝𝑛𝑖 such that 𝑑 (𝑝𝑛𝑖 , 𝑝) < 1/𝑖 . Given
𝜀 > 0, let 𝑘 be a positive integer such that 1/𝑘 < 𝜀. Then, if 𝑖 ≥ 𝑘 , we have 𝑑 (𝑝𝑛𝑖 , 𝑝) < 𝜀. Thus,
{𝑝𝑛𝑖 } converges to 𝑝 , so (b) implies (c).

Now suppose 𝑋 is sequentially compact. First, let {𝑝𝑛} be a Cauchy sequence in 𝑋 . There is a
subsequence {𝑝𝑛𝑖 } of {𝑝𝑛} that converges to some 𝑝 ∈ 𝑋 . By Theorem 5.2.9b, {𝑝𝑛} also converges
to 𝑝 . Hence, 𝑋 is complete. Next, let {𝑞𝑛} be a sequence in𝑋 . By sequental compactness, {𝑞𝑛} has
a convergent subsequence {𝑞𝑛𝑖 }. Since every convergent sequence is a Cauchy sequence, {𝑞𝑛𝑖 } is
a Cauchy subsequence of {𝑞𝑛}. Thus, by Theorem 5.4.2, 𝑋 is totally bounded. Hence, (c) implies
(d).

Finally, suppose 𝑋 is complete and totally bounded but not compact. Then there exists an
open cover {𝐺𝛼 } of 𝑋 which contains no finite subcollection that also covers 𝑋 . For any 𝑥 ∈ 𝑋 ,
let 𝑉𝑟 (𝑥) be the set of points 𝑦 such that 𝑑 (𝑥,𝑦) ≤ 𝑟 . Then 𝑉𝑟 (𝑥) is closed and 𝑁𝑟 (𝑥) ⊆ 𝑉𝑟 (𝑥).
Since 𝑋 is totally bounded, there is a finite set 𝑆 ⊆ 𝑋 such that 𝑋 ⊆ ⋃

𝑥∈𝑆 𝑉1/2(𝑥). Because 𝑋
is not compact, we can find 𝑇1 = 𝑉1/2(𝑥) for some 𝑥 ∈ 𝑆 such that 𝑇1 is not covered by a finite
subcollection of {𝐺𝛼 }. Since 𝑇1 is also totally bounded, we can continue the process to find a
sequence {𝑇𝑛} of subsets of 𝑋 with the following properties:

(i) 𝑇1 ⊇ 𝑇2 ⊇ 𝑇3 ⊇ · · · ;

(ii) 𝑇𝑛 is closed;

(iii) 𝑇𝑛 is not covered by any finite subcollection of {𝐺𝛼 };

(iv) For any 𝑥,𝑦 ∈ 𝑇𝑛 , 𝑑 (𝑥,𝑦) ≤ 1/𝑛.
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Let 𝑝𝑛 ∈ 𝑇𝑛 . By (i) and (iv), {𝑝𝑛} is a Cauchy sequence. Since 𝑋 is complete, 𝑝𝑛 → 𝑝 for some
𝑝 ∈ 𝑋 . For any fixed positive integer 𝑘 , (i) implies that {𝑝𝑛+𝑘−1} is a subsequence of {𝑝𝑛} in 𝑇𝑘 ,
which also converges to 𝑝 . Hence, by (ii), 𝑝 ∈ 𝑇𝑛 for all 𝑛. For some 𝛼 , 𝑝 ∈ 𝐺𝛼 . Since 𝐺𝛼 is open,
there is 𝜀 > 0 such that 𝑁𝜀 (𝑝) ⊆ 𝐺𝛼 . If 𝑛 is sufficiently large that 1/𝑛 < 𝜀, we obtain, by (iv),
𝑇𝑛 ⊆ 𝑁𝜀 (𝑝), which contradicts (iii). Thus, (d) implies (a). ■

Theorem 5.5.5. Every closed subset of a compact metric space 𝑋 is compact.

Proof. Let 𝑆 be a closed subset of 𝑋 . Since 𝑋 is totally bounded, 𝑆 is also totally bounded. By
Theorem 5.3.2b, 𝑆 is complete since 𝑋 is complete. Thus, 𝑆 is compact. ■

Theorem 5.5.6. Every compact subset of a metric space 𝑋 is closed and bounded.

Proof. Let 𝑆 be a compact subset of 𝑋 . Since 𝑆 is complete and totally bounded, it is closed and
bounded by Theorems 5.3.2a and 5.4.3. ■

Theorem 5.5.7 (Heine-Borel). Every subset 𝑆 of R𝑘 is compact if and only if it is closed and
bounded.

Proof. Suppose 𝑆 is closed and bounded. Since R𝑘 is complete, 𝑆 is complete by Theorem 5.3.2b.
That 𝑆 is totally bounded follows from Theorem 5.4.4. Hence, 𝑆 is compact. The converse follows
from Theorem 5.5.6. ■

5.6 Series

Definition 5.6.1. Given a sequence {𝑎𝑛}∞𝑛=1, the sum

∞∑︁
𝑛=1

𝑎𝑛,

is called an infinite series.
The sequence

𝑠𝑛 =

𝑛∑︁
𝑖=1

𝑎𝑖 ,

is called the partial sum of the series.
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If lim𝑛→∞ 𝑠𝑛 < 0, the series is said to converge, else it diverges. If
∑
𝑎𝑛 converges but∑ |𝑎𝑛 | does not, we say that 𝑎𝑛 conditionally converges, otherwise it is absolutely convergent.

An important example of a series is the geometric series
∑∞
𝑖=1 𝑎𝑟

𝑖 . We have the following
theorem.

Theorem 5.6.2. The geometric series converges if and only if |𝑟 | < 1, in which case it converges
to 𝑎

1−𝑟 .

Proof. We note that for 𝑟 ≠ 1,

𝑠𝑛 (1 − 𝑟 ) = 𝑎
(
1 + 𝑟 + 𝑟 2 + 𝑟 3 + · · · + 𝑟𝑛

)
(1 − 𝑟 )

= 𝑎
(
1 + 𝑟 + 𝑟 2 + 𝑟 3 + · · · + 𝑟𝑛

)
1 − 𝑎

(
1 + 𝑟 + 𝑟 2 + 𝑟 3 + · · · + 𝑟𝑛−1 + 𝑟𝑛

)
𝑟

= 𝑎
(
1 + 𝑟 + 𝑟 2 + 𝑟 3 + · · · + 𝑟𝑛 − 𝑟 − 𝑟 2 − 𝑟 3 − · · · − 𝑟𝑛 − 𝑟𝑛+1)

= 𝑎
(
1 − 𝑟𝑛+1)

SO
𝑠𝑛 (1 − 𝑟 ) = 𝑎

(
1 − 𝑟𝑛+1)

𝑠𝑛 = 𝑎
1 − 𝑟𝑛+1

1 − 𝑟
If |𝑟 | < 1, lim𝑛→∞ 𝑟𝑛 = 0 so

lim
𝑛→∞

𝑠𝑛 = lim
𝑛→∞

𝑎
1 − 𝑟𝑛+1

1 − 𝑟 = 𝑎
1

1 − 𝑟 .

Thus, when |𝑟 | < 1 the geometric series converges to 𝑎/(1 − 𝑟 ).
If |𝑟 | > 1, then

lim
𝑛→∞

𝑟𝑛 = ∞

and so the series diverges.
If |𝑟 | = 1, then

|𝑠𝑛 | =
𝑛∑︁
𝑖=0

1 = 𝑛 + 1.

Therefore,
lim
𝑛→∞

|𝑠𝑛 | = lim
𝑛→∞

(𝑛 + 1) = ∞

and so the series diverges. ■

We have the following facts that follow from the linearity of addition.
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Theorem 5.6.3. Suppose
∑
𝑎𝑛 and

∑
𝑏𝑛 are convergent series and 𝑐 ∈ R, then ∑

𝑎𝑛 + 𝑐𝑏𝑛 =∑
𝑎𝑛 + 𝑐

∑
𝑏𝑛 .

We have the following tests for convergence and divergence. The proofs are omitted.

Theorem 5.6.4. Let
∑
𝑎𝑛 and

∑
𝑏𝑛 be a series.

1. (Divergence Test) If
∑
𝑎𝑛 converges, then lim𝑛→∞ 𝑎𝑛 = 0.

2. (Integral Test) If 𝑓 is a continuous, positive, decreasing function such that 𝑎𝑛 = 𝑓 (𝑛) then∑
𝑎𝑛 and

∫ ∞
1 𝑓 (𝑥)𝑑𝑥 both converge or diverge.

3. (p-Series Test) If 𝑎𝑛 = 1
𝑛𝑝
, then

∑
𝑎𝑛 converges if and only if 𝑝 > 1.

4. (Alternating Test) If 𝑎𝑛 = (−1)𝑛𝑏𝑛 with 𝑏𝑛 decreasing and 𝑏𝑛 ≥ 0,
∑
𝑎𝑛 converges if and

only if 𝑏𝑛 → 0.

5. (Comparison Test) Suppose 𝑎𝑛 ≤ 𝑏𝑛 . If
∑
𝑏𝑛 converges, so does

∑
𝑎𝑛 . If

∑
𝑎𝑛 diverges, so

does
∑
𝑏𝑛 .

6. (Absolute Convergence Test) If
∑ |𝑎𝑛 | converges, so does

∑
𝑎𝑛 .

7. (Ratio Test) If 𝑎𝑛 ≥ 0 and 𝑎𝑛+1
𝑎𝑛

→ 𝐿, then
∑
𝑎𝑛 converges if 𝐿 < 1 and diverges if 𝐿 > 1.

8. (Root Test) If 𝑎𝑛 ≥ 0 with (𝑎𝑛)
1
𝑛 → 𝐿, then

∑
𝑎𝑛 converges if 𝐿 < 1 and diverges if 𝐿 > 1.

9. (Dirichlet’s Test) If 𝑠𝑛 =
∑𝑛
𝑖=1 𝑎𝑖 is a bounded sequence, and 𝑏𝑛 is a decreasing positive

sequence limiting to zero, then
∑
𝑎𝑛𝑏𝑛 converges.

10. (Abel’s Test) If
∑
𝑎𝑛 is convergent and 𝑏𝑛 is a monotone convergence sequence of numbers,

then
∑
𝑎𝑛𝑏𝑛 converges.

11. (Cauchy Product) If
∑
𝑎𝑛 converges absolutely, and

∑
𝑏𝑛 converges, then∑

𝑎𝑛𝑏𝑛 = (∑𝑎𝑛) (
∑
𝑏𝑛).

Be careful about conditionally convergent series.

Theorem 5.6.5 (Riemann’s Rearrangement Theorem). If
∑
𝑎𝑛 is absolutely convergent, then

for any bijection 𝑝 : N→ N, ∑𝑎𝑝 (𝑛) converges absolutely and their sums coincide.
If

∑
𝑎𝑛 is conditionally convergent, for all 𝑡 ∈ R, there exists a bijection 𝑝 : N → N such

that
∑
𝑎𝑝 (𝑛) = 𝑡 .

Proof. We only prove the second part (the first part is mostly definition-chasing). Let 𝑡 > 0 (the
proof for negative 𝑡 is much the same).
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Let 𝑏𝑛 = max{𝑎𝑛, 0} be the sequence of positive terms and 𝑐𝑛 = min{𝑎𝑛, 0} be the sequence of
negative terms. Note that the first tends to +∞ and the latter to −∞. (Hopefully this is intuitive,
but to see it formally, note that 𝑏𝑛 = 1

2 ( |𝑎𝑛 | + 𝑎𝑛) and note that if
∑
𝑏𝑛 converges, then

∑
𝑎𝑛 must

- a contradiction.)
Since the series

∑
𝑏𝑛 of positive terms in

∑
𝑎𝑛 is divergent, there exists first index 𝑘 such that

𝑡1 = 𝑏1 + 𝑏2 + . . . + 𝑏𝑘 > 𝑡 .

Since the series
∑
𝑐𝑛 of negative terms in

∑
𝑎𝑛 is divergent, there is first index𝑚 such that

𝑡2 = 𝑡1 + 𝑐1 + 𝑐2 + . . . + 𝑐𝑚 < 𝑡 .

We continue in the same manner to claim the existence of smallest indices 𝑢 and 𝑣 such that

𝑡3 = 𝑡2 + 𝑏𝑘+1 + 𝑏𝑘+2 + . . . + 𝑏𝑢 > 𝑎,

and
𝑡4 = 𝑡3 + 𝑐𝑚+1 + 𝑐𝑚+2 + . . . + 𝑐𝑣 < 𝑡,

and so on. The sequence 𝑡𝑖 so obtained converges to 𝑡 since the terms 𝑎𝑛 (and thus also 𝑏𝑛 and
𝑐𝑛) tend to 0, implying that, with every step in the construction, the difference between 𝑡𝑖 and 𝑡
(which is no larger than the last term in 𝑏𝑛 or 𝑐𝑛 added to the sequence) tends to zero. ■

At some point in the first year, you will likely use the following helpful formula.

Theorem 5.6.6 (Abel’s Partial Summation Formula). Let 𝑛 > 1, and 𝑠𝑛 =
∑𝑛
𝑖=1 𝑎𝑖

𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑏𝑛+1𝑠𝑛 +
𝑛∑︁
𝑖=1

𝑠𝑖 (𝑏𝑚 − 𝑏𝑚+1) .

This is analogous to the integration by parts formula.

Exercise 5.7. Write and prove an expression for
∑𝑚
𝑖=1 𝑖 ,

∑𝑚
𝑖=1 𝑖

2, and

∞∑︁
𝑘=1

𝑘𝑟𝑘 for 0 < 𝑟 < 1.
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6.1 Continuity

Definition 6.1.1. Let 𝑋 and 𝑌 be metric spaces, 𝐸 be a subset of 𝑋 , 𝑝 be a limit point of 𝐸, 𝑞
be a point of 𝑌 , and 𝑓 : 𝐸 → 𝑌 be a function from 𝐸 into 𝑌 . Then the notation

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑞.

means for every 𝜀 > 0, there exists a 𝛿 > 0 such that 𝑥 ∈ 𝐸 and 0 < 𝑑𝑋 (𝑥, 𝑝) < 𝛿 imply
𝑑𝑌 (𝑓 (𝑥), 𝑞) < 𝜀. In this case we may also write 𝑓 (𝑥) → 𝑞 as 𝑥 → 𝑝 .

Note that 𝑝 need not be a point in 𝐸, and even if 𝑝 ∈ 𝐸, it may be the case that 𝑓 (𝑝) ≠

lim𝑥→𝑝 𝑓 (𝑥). For the latter remark, consider 𝑓 (𝑥) = 1 if 𝑥 = 1, and 𝑓 (𝑥) = 0 otherwise.

Theorem 6.1.2. Let 𝑋,𝑌, 𝐸, 𝑝, 𝑞 and 𝑓 be defined as in Definition 6.1.1. Then

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑞

if and only if
lim
𝑛→∞

𝑓 (𝑝𝑛) = 𝑞

for every sequence {𝑝𝑛} in 𝐸 such that 𝑝𝑛 ≠ 𝑝 and 𝑝𝑛 → 𝑝 .

Proof. Suppose 𝑓 (𝑥) → 𝑞 as 𝑥 → 𝑝 and let {𝑝𝑛} be a sequence such that 𝑝𝑛 ≠ 𝑝 and 𝑝𝑛 → 𝑝 .
Hence, for every 𝜀 > 0, there exists a 𝛿 > 0 such that 0 < 𝑑𝑋 (𝑥, 𝑝) < 𝛿 implies 𝑑𝑌 (𝑓 (𝑥), 𝑞) < 𝜀.

97
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Since 𝑝𝑛 → 𝑝 , there exists an integer 𝑁 such that 𝑛 ≥ 𝑁 implies 0 < 𝑑𝑋 (𝑝𝑛, 𝑝) < 𝛿 . Thus,
𝑑𝑌 (𝑓 (𝑝𝑛), 𝑞) < 𝜀 as soon as 𝑛 ≥ 𝑁 .

Conversely, suppose 𝑓 (𝑝𝑛) → 𝑞 for every sequence {𝑝𝑛} in 𝐸 such that 𝑝𝑛 ≠ 𝑝 and 𝑝𝑛 → 𝑝 ,
but 𝑓 (𝑥) does not converge to 𝑞 as 𝑥 → 𝑝 . This means that there exists, for all 𝛿 > 0 and some
𝜀 > 0, a point 𝑥 (which may depend on 𝛿) in 𝐸 such that 0 < 𝑑𝑋 (𝑥, 𝑝) < 𝛿 but 𝑑𝑌 (𝑓 (𝑥), 𝑞) ≥ 𝜀.
However, setting 𝛿 = 1/𝑛, 𝑛 = 1, 2, 3, ..., we have 0 < 𝑑𝑋 (𝑥𝑛, 𝑝) < 1/𝑛 but 𝑑𝑌 (𝑓 (𝑥𝑛), 𝑞) ≥ 𝜀. This
is a contradiction because we have found a sequence {𝑥𝑛} that converges to 𝑝 but 𝑓 (𝑥𝑛) does not
converge to 𝑞. ■

Corollary 6.1.3. If 𝑓 has a limit at 𝑝 , this limit is unique.

Proof. This follows from Theorems 5.2.3b and 6.1.2. ■

Theorem 6.1.4. Suppose 𝐸 ⊂ 𝑋 , a metric space, 𝑝 is a limit point of 𝐸, 𝑓 and𝑔 are real functions
on 𝐸, and

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑞 lim
𝑥→𝑝

𝑔(𝑥) = 𝑟

Then

lim
𝑥→𝑝

(𝑓 + 𝑔) (𝑥) = 𝑞 + 𝑟

lim
𝑥→𝑝

(𝑓 𝑔) (𝑥) = 𝑞𝑟

lim
𝑥→𝑝

( 𝑓
𝑔
) (𝑥) = 𝑞

𝑟
if 𝑟 ≠ 0

Proof. Follows from Theorems 6.1.2 and 5.2.16. ■

Definition 6.1.5. Let 𝑋 and 𝑌 be metric spaces and 𝑓 : 𝑋 → 𝑌 be a function from 𝑋 into 𝑌 .
𝑓 is said to be continuous at a point 𝑝 ∈ 𝑋 if for every 𝜀 > 0, there exists a 𝛿 > 0 such that
𝑑𝑋 (𝑥, 𝑝) < 𝛿 , 𝑥 ∈ 𝑋 , implies 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑝)) < 𝜀. If 𝑓 is continuous at every point of a subset
𝐸 of 𝑋 , then 𝑓 is said to be continuous on 𝐸.

Note that 𝑓 has to be defined at the point 𝑝 in order to be continuous at 𝑝 . If 𝑝 is an isolated
point of 𝑋 , then any function 𝑓 which has 𝐸 as its domain is continuous at 𝑝 .
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Theorem 6.1.6. In the situation given in Definition 6.1.5, assume further that 𝑝 is also a limit
point. Then 𝑓 is continuous at 𝑝 if and only if

lim
𝑥→𝑝

𝑓 (𝑥) = 𝑓 (𝑝).

Proof. This is clear if we compare Definitions 6.1.1 and 6.1.5. ■

Example. Here are some examples:

(i) 𝑓 (𝑥) = 1 if 𝑥 = 1, and 𝑓 (𝑥) = 0 otherwise. 𝑓 has a limit at 𝑥 = 1, but the limit is not equal to
𝑓 (𝑥), so 𝑓 (𝑥) is not continuous at 𝑥 = 1.

(ii) 𝑓 (𝑥) = 0 for 𝑥 < 1, and 𝑓 (𝑥) = 1 otherwise. Then 𝑓 does not have a limit at 𝑥 = 1. Hence, 𝑓
is not continuous at 𝑥 = 1

♣

If 𝑓 : R → 𝑅, roughly speaking 𝑓 is continuous if the graph is a single unbroken curve with
no "holes" or "jumps".

Theorem 6.1.7. Let 𝑋 and 𝑌 be metric spaces and 𝑓 : 𝑋 → 𝑌 be a function from 𝑋 into 𝑌 .
Then 𝑓 is continuous on 𝑋 if and only if for every open set 𝑉 in 𝑌 , 𝑓 −1(𝑉 ) is open in 𝑋 .

Proof. Suppose 𝑓 is continuous on 𝑋 . Let 𝑉 be an open set in 𝑌 and 𝑝 ∈ 𝑓 −1(𝑉 ). Since 𝑉 is
open, there exists an 𝜀 > 0 such that 𝑑𝑌 (𝑦, 𝑓 (𝑝)) < 𝜀 implies 𝑦 ∈ 𝑉 . Since 𝑓 is continuous at 𝑝 ,
there exists a 𝛿 > 0 such that 𝑑𝑋 (𝑥, 𝑝) < 𝛿 implies 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑝)) < 𝜀. This means 𝑓 (𝑥) ∈ 𝑉 , so
𝑥 ∈ 𝑓 −1(𝑉 ). Thus, 𝑝 is an interior point of 𝑓 −1(𝑉 ).

Conversely, suppose 𝑓 −1(𝑉 ) is open in 𝑋 for every open set 𝑉 in 𝑌 . Let 𝑝 ∈ 𝑋 and 𝜀 > 0.
Let 𝑉 be the set of points 𝑦 such that 𝑑𝑌 (𝑦, 𝑓 (𝑝)) < 𝜀. Hence, 𝑉 is open, so 𝑓 −1(𝑉 ) is open.
Thus, there exists a 𝛿 > 0 such that 𝑑𝑋 (𝑥, 𝑝) < 𝛿 implies 𝑥 ∈ 𝑓 −1(𝑉 ). This means 𝑓 (𝑥) ∈ 𝑉 , so
𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑝)) < 𝜀. ■

Corollary 6.1.8. Let 𝑋 and 𝑌 be metric spaces and 𝑓 be a function from 𝑋 into 𝑌 . Then 𝑓 is
continuous on 𝑋 if and only if for every closed set 𝑉 in 𝑌 , 𝑓 −1(𝑉 ) is closed in 𝑋 .

Proof. If 𝑉 is closed in 𝑌 , 𝑉 𝑐 is open in 𝑌 . Since 𝑓 −1(𝑉 𝑐) = (𝑓 −1(𝑉 ))𝑐 , the latter set is open by
Theorem 6.1.7. ■
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Theorem 6.1.9. Let 𝑓 and 𝑔 be real continuous functions on a metric space 𝑋 . Then 𝑓 + 𝑔, 𝑓 𝑔
and 𝑓

𝑔
are continuous on 𝑋 (assuming 𝑔(𝑥) ≠ 0 in the last case).

Proof. At isolated points of 𝑋 there is nothing to prove. At limit points, it follows from Theorem
6.1.4 and 6.1.6. ■

Theorem 6.1.10. (a) Let 𝑓1, ..., 𝑓𝑘 be real functions on a metric space and let f be the mapping
of 𝑋 into R𝑘 defined by

f (𝑥) = (𝑓1(𝑥), ..., 𝑓𝑘 (𝑥)) (𝑥 ∈ 𝑋 )

then f is continuous if and only if each of the functions 𝑓1, ..., 𝑓𝑘 is continuous.

(b) If f and g are continuous mappings of 𝑋 into R𝑘 , then f + g and f · g are continuous.

Proof. (a) follows from

|𝑓𝑗 (𝑥) − 𝑓𝑗 (𝑦) | ≤ |f (𝑥) − f (𝑦) | =
(
𝑘∑︁
𝑖=1

|𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦) |
) 1

2

for 𝑗 = 1, ..., 𝑘 .
(b) follows from (a) and Theorem 6.1.9. ■

Example. Let x = (𝑥1, ..., 𝑥𝑘 ) ∈ R𝑘 , and define 𝜙𝑖 for 𝑖 = 1, ..., 𝑘 as

𝜙𝑖 (x) = 𝑥𝑖 (x ∈ R𝑘 )

Then 𝜙𝑖 is continuous on R𝑘 since the inequality

|𝜙𝑖 (x) − 𝜙𝑖 (y) | ≤ |x − y|

shows that we may take 𝛿 = 𝜀.
Repeated application of Theorem 6.1.9 shows that every monomial
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𝑥
𝑛1
1 𝑥

𝑛2
2 · · · 𝑥𝑛𝑘

𝑘

where 𝑛1, ..., 𝑛𝑘 are nonnegative integers, is continuous on R𝑘 . Since constant functions are
continuous, applying Theorem 6.1.9 again we have that every polynomial 𝑃 , given by

𝑃 (x) =
𝑛∑︁
𝑖=1

𝑐𝑖𝑥
𝑛1,𝑖
1 𝑥

𝑛2,𝑖
2 · · · 𝑥𝑛𝑘,𝑖

𝑘

is continuous on R𝑘 . ♣

Theorem 6.1.11. If 𝑓 is a continuous mapping of a compact metric space 𝑋 into a metric space
𝑌 , then 𝑓 (𝑋 ) is compact.

Proof. Let {𝑉𝛼 } be an open cover of 𝑓 (𝑋 ). By Theorem 6.1.7, 𝑓 −1(𝑉𝛼 ) is open for every 𝛼 . Since
𝑋 is compact, there exists 𝛼1, 𝛼2, ..., 𝛼𝑛 such that

𝑋 ⊆ 𝑓 −1(𝑉𝛼1) ∪ 𝑓 −1(𝑉𝛼2) ∪ · · · ∪ 𝑓 −1(𝑉𝛼𝑛 ).

Hence,
𝑓 (𝑋 ) ⊆ 𝑉𝛼1 ∪𝑉𝛼2 ∪ · · · ∪𝑉𝛼𝑛 .

■

Theorem 6.1.12. Let 𝑓 be a continuous real function on a compact metric space 𝑋 . Then there
exists points 𝑝 and 𝑞 in 𝑋 such that 𝑓 (𝑞) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑝) for all 𝑥 ∈ 𝑋 . That is, the function 𝑓
attains its maximum and minimum on any compact set.

Proof. Let 𝑀 = sup𝑝∈𝑋 𝑓 (𝑝) and 𝑚 = inf𝑞∈𝑋 𝑓 (𝑞). Since 𝑓 (𝑋 ) is compact, it is also closed and
bounded, by the Heine-Borel Theorem. Hence𝑀,𝑚 ∈ 𝑓 (𝑋 ), by Theorem 5.1.10. ■

Theorem 6.1.13 (Intermediate Value Theorem). Let 𝑓 : R→ R be a continuous function and
let 𝑓 (𝑎) < 𝑘 < 𝑓 (𝑏). Then there exists some 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑘 .

Proof. Let 𝑆 be the set of all 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) ≤ 𝑘 . Clearly 𝑎 ∈ 𝑆 , so that 𝑆 is non-empty.
It is also bounded above, so that 𝑆 is compact and 𝑐 = sup 𝑆 exists. We will show that 𝑓 (𝑐) = 𝑘 .
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Since 𝑓 is continuous, for any 𝜀 > 0, there is a 𝛿 > 0 such that for all 𝑥 ∈ (𝑐 −𝛿, 𝑐 +𝛿), we have

𝑓 (𝑥) − 𝜀 < 𝑓 (𝑐) < 𝑓 (𝑥) + 𝜀.

Because 𝑐 = sup 𝑆 , there is some 𝑎∗ ∈ (𝑐 − 𝛿, 𝑐]] that is contained in 𝑆 , and so

𝑓 (𝑐) < 𝑓 (𝑎∗) + 𝜀 ≤ 𝑘 + 𝜀.

Meanwhile, for any 𝑎′ ∈ (𝑐, 𝑐 + 𝛿), since 𝑎′ ∉ 𝑆 , we have

𝑓 (𝑐) > 𝑓 (𝑎′) − 𝜀 > 𝑘 − 𝜀.

Combining these inequalities, we obtain

𝑘 − 𝜀 < 𝑓 (𝑐) < 𝑘 + 𝜀

for any 𝜀 > 0, so that 𝑓 (𝑐) = 𝑘 as required.
■

Definition 6.1.14. Let 𝑓 be a mapping of a metric space 𝑋 into a metric space 𝑌 . We say
that 𝑓 is uniformly continuous on 𝑋 if for every 𝜀 > 0 there exists 𝛿 > 0 such that

𝑑𝑌 (𝑓 (𝑝), 𝑓 (𝑞)) < 𝜀

for all 𝑝 and 𝑞 in 𝑋 for which 𝑑𝑋 (𝑝, 𝑞) < 𝛿 .

Uniform continuity is a property of a function on a set, while continuity can be defined at a
single point. Clearly, every uniformly continuous function is continuous. However, a
continuous function may not be uniformly continuous. To see that, let 𝑓 (𝑥) = 1

𝑥
defined on

(0,∞). Continuous but not uniformly continuous.

Theorem 6.1.15. Let 𝑓 be a continuous mapping of a compact metric space 𝑋 into a metric
space 𝑌 . Then 𝑓 is uniformly continuous on 𝑋 .

Proof. Let 𝜀 > 0 be given. Since 𝑓 is continuous, we can associate to each point 𝑝 ∈ 𝑋 , 𝛿𝑝 > 0
such that

𝑞 ∈ 𝑋, 𝑑𝑋 (𝑝, 𝑞) < 𝛿𝑝 ⇒ 𝑑𝑌 (𝑓 (𝑝), 𝑓 (𝑞)) <
𝜀

2
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Let 𝐽𝑝 be the set of all 𝑞 ∈ 𝑋 for which 𝑑𝑋 (𝑝, 𝑞) < 1
2𝛿𝑝 .

Since 𝑝 ∈ 𝐽𝑝 , the collection of all sets 𝐽𝑝 is an open cover of 𝑋 , and since 𝑋 is compact, there is a
finite set of points 𝑝1, ..., 𝑝𝑛 ∈ 𝑋 such that

𝑋 ⊂ 𝐽𝑝1 ∪ .... ∪ 𝐽𝑝𝑛

Let 𝛿 = 1
2 min{𝛿𝑝1, ..., 𝛿𝑝𝑛 }. Then 𝛿 > 0 (for this, the finiteness of the covering is crucial).

Now take 𝑞, 𝑝 ∈ 𝑋 such that 𝑑𝑋 (𝑝, 𝑞) < 𝛿 . Then there is 𝑚 ∈ {1, ..., 𝑛} such that 𝑝 ∈ 𝐽𝑝𝑚 , and
hence 𝑑𝑋 (𝑝, 𝑝𝑚) < 1

2𝛿𝑝𝑚 . Also

𝑑𝑋 (𝑞, 𝑝𝑚) ≤ 𝑑𝑋 (𝑝, 𝑞) + 𝑑𝑋 (𝑝, 𝑝𝑚) < 𝛿 +
1
2
𝛿𝑝𝑚 ≤ 𝛿𝑝𝑚

But then

𝑑𝑌 (𝑓 (𝑝), 𝑓 (𝑞)) ≤ 𝑑𝑌 (𝑓 (𝑝), 𝑓 (𝑝𝑚)) + 𝑑𝑌 (𝑓 (𝑞), 𝑓 (𝑝𝑚)) < 𝜀

■

6.2 Correspondences

Recall that a function is a mathematical object that associates to every point in the domain a single
point in the range. A correspondence generalizes the idea of a function, allowing a point from the
domain to be associated with more than one point in the range.

Definition 6.2.1. Let𝑋 and𝑌 be sets. A correspondence 𝜙 between𝑋 and𝑌 is a nonempty
relation 𝜙 ⊂ 𝑋 × 𝑌 . That is, for every 𝑥 ∈ domain(𝜙), 𝜙 (𝑥) is a subset of 𝑌 . We write
𝜙 : 𝑋 ⇒ 𝑌 , 𝑥 ⇒ 𝜙 (𝑥) or 𝜙 : 𝑋 → 2𝑌 to denote a correspondence from 𝑋 to 𝑌 .

Definition 6.2.2. If the correspondence 𝜙 never maps a point in the domain into the empty
set, we say that 𝜙 is nonempty valued.
If the correspondence𝜙 maps every point in the domain into a set containing a single element,
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we say that 𝜙 is singleton valued. If the correspondence maps every point in the domain
into a closed (compact) set, we say the correspondence is closed-valued (compact-valued).

Definition 6.2.3. The graph of the correspondence 𝜙 : 𝑋 ⇒ 𝑌 is the set of points gr(𝜙) =
{(𝑥,𝑦) ∈ 𝑋 × 𝑌 : 𝑦 ∈ 𝜙 (𝑥)}.

Defining continuity of correspondences is slightly more complicated than defining continuity
of functions. Intuitively, a correspondence 𝜙 is continuous if "small" changes in 𝑥 produce "small"
changes in the set𝜙 (𝑥). With functions, it is obvious what it means that 𝑓 (𝑥) and 𝑓 (𝑥 ′) are similar
when 𝑥 and 𝑥 ′ are similar. With correspondences we need to make a comparison between the sets
𝜙 (𝑥) and 𝜙 (𝑥 ′). For that, we need two distinct concepts.

Definition 6.2.4. Let 𝑋 and 𝑌 be metric spaces, and 𝜙 : 𝑋 ⇒ 𝑌 be a correspondence.

(a) 𝜙 is upper hemicontinuous (uhc) at 𝑥0 ∈ 𝑋 if, for every open set 𝑉 ⊇ 𝜙 (𝑥0), there is
an open set 𝑈 with 𝑥0 ∈ 𝑈 such that

𝜙 (𝑥) ⊆ 𝑉 for every 𝑥 ∈ 𝑈 ∩ 𝑋

(b) 𝜙 is lower hemicontinuous (lhc) at 𝑥0 ∈ 𝑋 if, for every open set𝑉 such that𝜙 (𝑥0)∩𝑉 ≠

∅, there is an open set 𝑈 with 𝑥0 ∈ 𝑈 such that 𝜙 (𝑥) ∩𝑉 ≠ ∅ for every 𝑥 ∈ 𝑈 ∩ 𝑋

(c) 𝜙 is continuous at 𝑥0 ∈ 𝑋 if it is both uhc and lhc at 𝑥0.

(d) 𝜙 is upper hemicontinuous (respectively lower hemicontinuous, continuous) if it is uhc
(respectively lower hemicontinuous, continuous) at every 𝑥 ∈ 𝑋 .

Upper hemicontinuity captures the idea that 𝜙 (𝑥) will not "suddenly" contain new points just
as we move past some point 𝑥 , while lower hemicontinuity captures the idea that 𝜙 (𝑥) will not
"suddenly" lose points just as we move past some point 𝑥 .

Just as continuity can be defined in terms of open sets or in terms of sequences, hemicontinuity
also admits a sequence definition. However, the sequence definition of upper hemicontinuity only
applies when the space is compact.

Theorem 6.2.5. Let 𝜙 : 𝑋 ⇒ 𝑌 be a non-empty-valued correspondence.

1. Suppose 𝜙 satisfies the following: whenever {𝑥𝑛} is a sequence in 𝑋 with limit 𝑥 ∈ 𝑋 and
{𝑦𝑛} is a sequence in 𝑌 with 𝑦𝑛 ∈ 𝜙 (𝑥𝑛), then {𝑦𝑛} has a convergent subsequence with limit
in 𝜙 (𝑥). Then 𝜙 is uhc.
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2. Suppose that𝜙 is uhc and compact-valued. Then for any𝑥 ∈ 𝑋 and sequence {𝑥𝑛} converging
to 𝑥 , and any sequence {𝑦𝑛} in𝑌 with𝑦𝑛 ∈ 𝑓 (𝑥𝑛), there is a𝑦 ∈ 𝜙 (𝑥) such that a subsequence
of 𝑦𝑛 converges to 𝑦.

3. The correspondence 𝜙 is lhc if and only if for any 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝜙 (𝑥) and sequence {𝑥𝑛} with
limit 𝑥 , there exists a sequence {𝑦𝑛} in 𝑌 and 𝑁 ∈ N such that for all 𝑛 > 𝑁 , 𝑦𝑛 ∈ 𝜙 (𝑥𝑛)
and lim𝑛→∞𝑦𝑛 = 𝑦.

Proof. (1) Suppose that 𝜙 satisfied the property but were not uhc. Then there is an 𝑥 and open set
𝑉 containing 𝑓 (𝑥) such that for any open set 𝑈 containing 𝑥 , there is an 𝑥 ′ ∈ 𝑈 with 𝑓 (𝑥 ′) ∉ 𝑉 .
By taking smaller 𝑈 , we may obtain a sequence {𝑥𝑛} limiting to 𝑥 with 𝑦𝑛 ∈ 𝑓 (𝑥𝑛) but 𝑦𝑛 ∉ 𝑉 .
Since𝑉 𝑐 is closed, and 𝑦𝑛 is a sequence in𝑉 𝑐 , the limit of any convergent subsequence is in𝑉 𝑐 as
well. But then we have constructed an {𝑥𝑛} with no subsequence converging to a point in 𝜙 (𝑥),
a contradiction.

(2) Let 𝜙 be uhc and compact-valued. Consider any {𝑥𝑛} and {𝑦𝑛} as in the statement of the
theorem.

We first show that {𝑦𝑛} is bounded. This will imply it has a convergent subsequence, and then
show that the limit of this subsequence is in 𝜙 (𝑥).

By assumption 𝜙 (𝑥) is compact and thus bounded, so that there is some open 𝐵 containing
𝜙 (𝑥). By uhc, there is a neighborhood 𝑈 of 𝑥 with 𝜙 (𝑧) ⊆ 𝐵 for all 𝑧 ∈ 𝑈 . Since 𝑥𝑛 → 𝑥 , 𝑥𝑛 ∈ 𝑈
for sufficiently large 𝑛, so that 𝜙 (𝑥𝑛) ⊆ 𝐵 for sufficiently large 𝑛. But then {𝑦𝑛} ⊆ {𝜙 (𝑥𝑛)} is
bounded.

Let 𝑦 be the limit of a convergent subsequence of 𝑦𝑛 . Suppose that 𝑦 ∉ 𝜙 (𝑥). Since 𝜙 (𝑥)
is compact and therefore closed, the distance between 𝑦 and 𝜙 (𝑥) is strictly positive. Hence we
can identify a closed 𝜀−ball around 𝜙 (𝑥) that does not contain 𝑦. Because 𝜙 is uhc, 𝜙 (𝑥𝑛) will be
contained in this closed ball 𝐵𝜀 (𝜙 (𝑥)) for sufficiently large 𝑛. Therefore, so will the convergent
subsequence. The limit of the subsequence must also be in 𝐵𝜀 (𝜙 (𝑥)). But this contradicts our
choice of 𝜀.

(3) First, suppose that𝜙 is lhc and define {𝑥𝑛},𝑦 as in the theorem. For each integer 𝑘 , consider
𝑁1/𝑘 (𝑦). Clearly 𝑁1/𝑘 (𝑦) ∩ 𝜙 (𝑥) is nonempty, because it at least contains 𝑦. Because 𝜙 is lhc, for
each 𝑘 there exists a neighborhood𝑈𝑘 of 𝑥 such that for each 𝑧 ∈ 𝑈𝑘 , 𝜙 (𝑧𝑘 )∩𝑁1/𝑘 (𝑦) ≠ ∅. Because
𝑥𝑛 → 𝑥 , 𝑥𝑛 is eventually in𝑈𝑘 for each 𝑘 and sufficiently large 𝑛. Choose a subsequence 𝑥𝑛𝑘 of 𝑥𝑛
with successive terms in𝑈𝑘 . The associated 𝑦𝑛𝑘 ∈ 𝜙 (𝑥𝑛𝑘 ) ∩𝑁1/𝑘 (𝑦). As 𝑘 tends to infinity, clearly
we must have 𝑦𝑛𝑘 → 𝑦.

Now suppose that the property holds but that 𝜙 were not lhc. Then there exists an open 𝑉
with 𝜙 (𝑥) ∩𝑉 ≠ ∅ such that every neighborhood𝑈 of 𝑥 contains a point 𝑧𝑈 with 𝜙 (𝑧𝑈 ) ∩𝑉 = ∅.
Taking a sequence of such neighborhoods 𝑈𝑛 = 𝑁1/𝑛 (𝑥) and an appropriate 𝑥𝑛 ∈ 𝑈𝑛 , we obtain
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𝑥𝑛 converging to 𝑥 with 𝜙 (𝑥𝑛) ∩𝑉 = ∅ for all 𝑛. Then any sequence of 𝑦𝑛 ∈ 𝜙 (𝑥𝑛) is contained in
𝑉 𝑐 , so that if it converges, it converges in 𝑉 𝑐 (which is closed). If we let 𝑦 be a point in 𝜙 (𝑥) ∩𝑉 ,
it is clear that no {𝑦𝑛} can converge to 𝑦. This is a contradiction.

■

Definition 6.2.6. A correspondence 𝜙 has the closed graph property if its graph is a closed
subset of 𝑋 ×𝑌 , that is, for any 𝑥𝑛 → 𝑥 ∈ 𝑋 and 𝑦𝑛 → 𝑦 ∈ 𝑌 with 𝑦𝑛 ∈ 𝜙 (𝑥𝑛), then 𝑦 ∈ 𝜙 (𝑥).

Check that the correspondence

𝜙 (𝑥) =

{1/𝑥} if 𝑥 > 0

{0} if 𝑥 = 0,

has the closed graph property but is not uhc and that

𝜙 ′(𝑥) =

{1/𝑥} if 𝑥 > 0

R if 𝑥 = 0,

has the closed graph property but is uhc.
We have the following important theorem that makes identifying upper hemicontinuity easier

in some examples.

Theorem 6.2.7. Suppose 𝑋 ⊂ R𝑛, 𝑌 ⊂ R𝑚 , and 𝜙 : 𝑋 → 2𝑌 .

(i) If 𝜙 is closed-valued and upper hemicontinuous, then 𝜑 has closed graph.

(ii) If 𝑌 is compact, then 𝜑 has closed graph⇐⇒ 𝜙 is closed-valued and upper hemicontinuous.

Proof. Proof of (i): Suppose that 𝜙 is closed-valued and upper hemicontinuous. If 𝜙 does not have
closed graph, there is some sequence (𝑥𝑛, 𝑦𝑛) → (𝑥,𝑦) where 𝑦𝑛 ∈ 𝜙 (𝑥𝑛) but 𝑦 ∉ 𝜙 (𝑥). Since 𝜙
is closed-valued, 𝜙 (𝑥) is closed, and we can identify disjoint open sets 𝐺,𝑉 such that 𝑦 ∈ 𝐺 and
𝜙 (𝑥) ⊆ 𝑉 . Since 𝜙 is uhc, there is an open set𝑈 with 𝑥 ∈ 𝑈 such that 𝑥 ∈ 𝑈 ∩𝑋 implies 𝜙 (𝑥) ⊆ 𝑉 .

Since (𝑥𝑛, 𝑦𝑛) → (𝑥,𝑦), 𝑥𝑛 ∈ 𝑈 for sufficiently large 𝑛, so that 𝑦𝑛 ∈ 𝜙 (𝑥𝑛) ⊆ 𝑉 . Thus for
sufficiently large 𝑛, ∥𝑦𝑛 − 𝑦0∥ ≥ 𝜀 for some 𝜀 > 0, so that 𝑦𝑛 ↛ 𝑦, a contradiction. Thus, 𝜙 has
closed graph.

Proof of (ii): We only need to prove the forward implication. Suppose that the graph of 𝜙 is a
closed set, and that lim𝑛→∞ 𝑥𝑛 = 𝑥 and lim𝑛→∞𝑦𝑛 = 𝑦, and 𝑦𝑛 ∈ 𝜙 (𝑥𝑛) for all 𝑛. Then {(𝑥𝑛, 𝑦𝑛)} is
a sequence from graph of 𝜙 with limit point (𝑥,𝑦), and since the graph of 𝜙 is closed this means
that (𝑥,𝑦) is in the graph, which is to say that𝑦 ∈ 𝜙 (𝑥). Therefore, 𝜙 is upper hemicontinuous. ■
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Theorem 6.2.8. A singleton-valued correspondence 𝜙 is lower hemicontinuous if and only if it
describes a continuous function. Similarly, a singleton-valued correspondence is upper
hemicontinuous if and only if it describes a continuous function.

Proof. Suppose 𝜙 is lower hemicontinuous. Take any 𝑥 ∈ 𝑋 and sequence {𝑥𝑛} with limit 𝑥 .
Since 𝑓 (𝑥) ∈ 𝜙 (𝑥), lower hemicontinuity means that for some sequences {𝑦𝑛} with 𝑦𝑛 ∈ 𝜙 (𝑥𝑛),
lim𝑛 𝑦𝑛 = 𝑓 (𝑥). But the only choice for 𝑦𝑛 is 𝑓 (𝑥𝑛), so lim 𝑓 (𝑥𝑛) = 𝑓 (𝑥). Therefore, 𝑓 is
continuous. Conversely, for 𝑥 ∈ 𝑋 and {𝑥𝑛} with limit 𝑥 , continuity of 𝑓 ensures that
lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑥). Therefore, for all 𝑦 ∈ 𝜙 (𝑥) (and there is only one such 𝑦, namely 𝑓 (𝑥)), we
can find 𝑦𝑛 ∈ 𝜙 (𝑥𝑛), namely 𝑦𝑛 = 𝑓 (𝑥𝑛) with limit 𝑦 = 𝑓 (𝑥). This is lower hemicontinuity.

Now suppose 𝜙 is upper hemicontinuous. Fix𝑉 open in 𝑌 , and consider the set 𝜙𝑢 (𝑉 ) = {𝑥 ∈
𝑋 : 𝜙 (𝑥) ⊆ 𝑉 . Upper hemicontinuity implies that this set is open. But 𝜙𝑢 (𝑉 ) = 𝑓 −1(𝑉 ), so 𝑓 is
continuous by the open mapping definition of continuity. The same logic gives that 𝑓 continuous
implies 𝜙 uhc. ■

Example. Consider the following correspondence 𝜙 defined for 𝑋 = 𝑌 = R as follows:

𝜙 (𝑥) =


{2 − 𝑥, 4 − 𝑥} for 𝑥 < 2

[2 − 𝑥, 4 − 𝑥] for 2 ≤ 𝑥 ≤ 3

{𝑥 − 3} for 𝑥 > 3

This correspondence is upper hemicontinuous. The easiest way to see this is to note that its graph
is a closed set. It is not lower hemicontinuous. It fails at 𝑥 = 2 and 𝑥 = 3. For instance 1 ∈ 𝜙 (2),
but as you approach 𝑥 = 2 from below, you cannot get "close" to value 1; there are only sequences
approaching to value 𝑦 = 2 and 𝑦 = 0 (provided that they converge). ♣

Example. Consider the correspondence 𝜙 : R⇒ R defined by

𝜙 (𝑥) =


{2 − 𝑥, 4 − 𝑥} for 𝑥 < 2

[3 − 𝑥, 5 − 𝑥] for 2 ≤ 𝑥 ≤ 3

{𝑥 − 3} for 𝑥 > 3

It is neither upper nor lower hemicontinuous. For lower hemicontinuity, it fails in a similar way
as the previous correspondence at 𝑥 = 2 and 𝑥 = 3. For upper hemicontinuity, observe that the
limit point (2, 0) is not in the graph of 𝜙 (so the graph of 𝜙 is not closed). ♣
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Example. Consider the correspondence 𝜙 : R⇒ R defined by

𝜙 (𝑥) =



{2 − 𝑥, 4 − 𝑥} for 𝑥 < 2

∅ for 𝑥 = 2

[3 − 𝑥, 5 − 𝑥] for 2 < 𝑥 < 3

{0} for 𝑥 = 3

{𝑥 − 3} for 𝑥 > 3

The correspondence is lower hemicontinuous, but not upper hemicontinuous. ♣

6.3 Fixed Points

Definition 6.3.1. A fixed point of function 𝑓 : 𝑋 → 𝑋 is a point 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑥 .

Fixed points are useful in economics because they characterize equilibria of carefully formulated
economic problems. Fixed point theorems are conditions under which fixed points are guaranteed
to exist. These come in many flavors, and we will consider only a couple of the most well-known
and useful ones here. The simplest fixed point theorem is as follows.

Theorem 6.3.2. Let 𝑓 : [0, 1] → [0, 1] be continuous. Then there exists a fixed point of 𝑓 .

Proof. Consider the function 𝜙 : [0, 1] → R given by 𝜙 (𝑥) = 𝑓 (𝑥) − 𝑥 . Now 𝜙 (0) = 𝑓 (0) ∈ [0, 1],
while 𝜙 (1) = 𝑓 (1) − 1 ∈ [−1, 0]. Since 𝜙 (0) ≥ 0 and 𝜙 (1) ≤ 0, the intermediate value theorem
implies that there is an 𝑥 ∈ [0, 1] such that 𝜙 (𝑥) = 0 so that 𝑓 (𝑥) = 𝑥 . ■

This fixed point theorem is the simplest example of a much more general and deep result
called Brouwer’s Fixed Point Theorem. In order to state the theorem, we need to introduce one
piece of mathematical machinery, called convexity. We will study convexity a lot more in later
chapters, so we will only include the very basic facts about convexity now.

Definition 6.3.3. A set 𝐶 ⊆ 𝑋 is convex if for any x, y ∈ 𝐶 , we have 𝜆x + (1 − 𝜆)y ∈ 𝐶 for
all 𝜆 ∈ (0, 1).
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convex non-convex

Theorem 6.3.4 (Brouwer’s Fixed Point Theorem). Let 𝑋 ⊂ R𝑘 be nonempty, compact and
convex, and let 𝑓 : 𝑋 → 𝑋 be continuous function. Then there exists a fixed point of 𝑓 .

Brouwer’s Fixed Point Theorem is more complicated to prove. We will not do it here. The classic
proofs of Brouwer’s Fixed Point Theorem are non-constructive, that is, they do not show you
how to actually compute the fixed point. On the other hand, there are constructive proofs (using
a combinatorial technique called Sperner’s Lemma) that describe how to approximate fixed
points to any desired level of approximation. However, a very famous result of modern
computer science is that this problem of approximation is NP-hard, which means
(approximately) that such approximation can take an exponentially long time (in the desired
level of approximation). This result has had a significant influence in microeconomic theory and
has led to a philosophical debate about the concept of equilibrium in economics (summarized
roughly by ‘if equilibria can’t be computed efficiently by a computer, how do people behave
according to them’).

Most fixed point theorems have a version for correspondences, which are particularly helpful
in economics (where correspondences arise naturally in situations of indifference). The following
is the correspondence version of Brouwer’s Fixed Point Theorem.

Theorem 6.3.5 (Kakutani’s Fixed Point Theorem). Let 𝐹 : 𝑋 ⇒ 𝑋 be a nonempty, convex-
valued and upper hemicontinuous correspondence on𝑋 , a nonempty, compact and convex subset
of R𝑘 . Then there exists a fixed point of 𝐹 , so that 𝑥 ∈ 𝐹 (𝑥).

Another branch of fixed point theorems make more restrictive assumptions than continuity,
but with the added benefit of tractable computation of fixed points. We begin with the following
definition.

Definition 6.3.6. Let 𝑋 be a metric space and 𝑇 : 𝑋 → 𝑋 be a function on 𝑋 .

(a) 𝑇 is Lipschitz continuous with Lipschitz constant 𝛽 if there exist 𝛽 > 0 such that
𝑑 (𝑇 (𝑥),𝑇 (𝑦)) ≤ 𝛽𝑑 (𝑥,𝑦).
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(b) 𝑇 is a contractionmappingwithmodulus 𝛽 if𝑇 is Lipschitz continuouswith a Lipschitz
constant 𝛽 < 1.

Lipschitz continuous mappings are very well-behaved, and contraction mappings especially so.

Theorem 6.3.7. If 𝑇 is Lipschitz continuous, then 𝑇 is uniformly continuous on 𝑋 .

Theorem 6.3.8 (Banach’s Fixed Point Theorem or ContractionMapping Theorem). If
𝑋 is a complete metric space and 𝑇 is a contraction mapping with modulus 𝛽 on 𝑋 , then 𝑇 has
a unique fixed point 𝑥∗ and for any 𝑦 ∈ 𝑋 , 𝑑 (𝑇𝑛 (𝑦), 𝑥∗) ≤ 𝛽𝑛𝑑 (𝑥,𝑦).

Proof. Let 𝑦 ∈ 𝑋 be arbitrary. We define a sequence (𝑥𝑛) in 𝑋 by 𝑥𝑛 = 𝑇𝑛𝑦.
First, we show (𝑥𝑛) is a Cauchy sequence. If 𝑛 ≥ 𝑚 ≥ 1, then since𝑇 is a contraction, we have

𝑑 (𝑥𝑛, 𝑥𝑚) = 𝑑 (𝑇𝑛𝑥0,𝑇
𝑚𝑥0)

≤ 𝛽𝑚𝑑 (𝑇𝑛−𝑚𝑥0, 𝑥0)

≤ 𝛽𝑚
[
𝑑

(
𝑇𝑛−𝑚𝑥0,𝑇

𝑛−𝑚−1𝑥0
)
+ 𝑑

(
𝑇𝑛−𝑚−1𝑥0,𝑇

𝑛−𝑚−2𝑥0
)

+ · · · + 𝑑 (𝑇𝑥0, 𝑥0)
]

≤ 𝛽𝑚

[
𝑛−𝑚−1∑︁
𝑘=0

𝛽𝑘

]
𝑑 (𝑥1, 𝑥0)

≤ 𝛽𝑚

[ ∞∑︁
𝑘=0

𝛽𝑘

]
𝑑 (𝑥1, 𝑥0)

≤
(
𝛽𝑚

1 − 𝛽

)
𝑑 (𝑥1, 𝑥0)

which implies that (𝑥𝑛) is Cauchy.
Since𝑋 is complete, (𝑥𝑛) converges to a limit 𝑥∗ ∈ 𝑋 . The fact that the limit 𝑥∗ is a fixed point

of 𝑇 follows from the continuity of 𝑇 :

𝑇𝑥 = 𝑇 lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑥 .

Finally, to show uniqueness, if 𝑥∗ and 𝑦∗ were two fixed points then

0 ≤ 𝑑 (𝑥∗, 𝑦∗) = 𝑑 (𝑇𝑥∗,𝑇𝑦∗) ≤ 𝛽𝑑 (𝑥∗, 𝑦∗),

which is impossible since 𝛽 < 1. ■

Our final fixed-point theorem is more abstract and applies in situations where metrics cannot be
defined. Instead, we consider a simpler algebraic structure called a lattice. Lattices will come up
again in ECON 202 and 203.
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Definition 6.3.9. Let𝑋 be a set and ⪰ a partial order defined on𝑋 (i.e., a reflexive, transitive
and anti-symmetric relation). Set 𝑋 is called a lattice if every pair 𝑥, 𝑥 ′ ∈ 𝑋 has a greatest
lower bound and a least upper bound in 𝑋 , while 𝑋 is a complete lattice if every subset of
𝑋 has both a greatest lower bound and a least upper bound.

In lattices, the greatest lower bound of 𝑥 and 𝑦 is usually called the meet and denoted
𝑥 ∧ 𝑦 while the least upper bound of 𝑥 and 𝑦 is usually called the join and denoted 𝑥 ∨ 𝑦.

Some examples of lattices include any box space [𝑎, 𝑏]𝑘 (with the usual order ≤) or the power set
of any set (ordered by inclusion ⊆).

Theorem 6.3.10 (Tarski’s Fixed Point Theorem). Let 𝑋, ≤ be a complete lattice and let
𝑓 : 𝑋 → 𝑋 be a nondecreasing function (i.e. 𝑥 ≤ 𝑥 ′ implies 𝑓 (𝑥) ≤ 𝑓 (𝑥 ′)). Then 𝑓 has a fixed
point, and the set of all fixed points is a lattice. This implies there is a least fixed point and a
largest fixed point (with respect to ≤).
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7.1 Derivatives

You are probably already aware of the definition of the derivative in one dimension as an
instantaneous rate of change. In this section, we will generalize this concepts to abstract metric
spaces.

Definition 7.1.1. Let 𝑓 : R→ R. The derivative of 𝑓 at 𝑥 ∈ R is defined as

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

provided that this limit exists. If 𝑓 ′ is defined at every point of a set 𝐸 ⊆ R, we say that 𝑓 is
differentiable on 𝐸.

Before we seek to generalize this definition to other metric spaces, let us note some properties
of the derivative of single-variable functions.

Theorem 7.1.2. Let 𝑓 be defined on [𝑎, 𝑏]. If 𝑓 is differentiable at a point 𝑥 ∈ [𝑎, 𝑏], then 𝑓 is
continuous at 𝑥 .

Proof. For any 𝑡 ≠ 𝑥 , rewrite 𝑓 (𝑡) − 𝑓 (𝑥) = 𝑓 (𝑡 )−𝑓 (𝑥 )
𝑡−𝑥 · (𝑡 − 𝑥). Then 𝜙 (𝑡) = 𝑓 (𝑡 )−𝑓 (𝑥 )

𝑡−𝑥 → 𝑓 ′(𝑥)
(since 𝑓 is differentiable at 𝑥), and 𝑡 −𝑥 → 0. Then by Theorem 6.1.4, 𝑓 (𝑡) − 𝑓 (𝑥) → 0, and hence
by Theorem 6.1.4 again 𝑓 (𝑡) → 𝑓 (𝑥). Thus, 𝑓 is continuous at 𝑥 . ■

If 𝑓 is continuous at 𝑥 , it may not be differentiable at 𝑥 . To see that, consider 𝑓 (𝑥) = 𝑥 for
𝑥 < 1 and 𝑓 (𝑥) = 1 for 𝑥 ≥ 1. 𝑓 is continuous but not differentiable at 𝑥 = 1.

113



114 7 Differentiation

Definition 7.1.3. If 𝑓 has a derivative 𝑓 ′ on an interval, and 𝑓 ′ is itself differentiable, we
denote the derivative of 𝑓 ′ by 𝑓 ′′ and call 𝑓 ′′ the second derivative of 𝑓 . Similarly, in this
manner we obtain functions: 𝑓 , 𝑓 ′, 𝑓 ′′, 𝑓 (3) , ..., 𝑓 (𝑛) , each of which is the derivative of the
preceding one. 𝑓 (𝑛) is called the 𝑛th derivative, of the derivative of order 𝑛, of 𝑓 .
In order for 𝑓 (𝑛) (𝑥) to exist at point 𝑥 , 𝑓 (𝑛−1) must exist in a neighborhood of 𝑥 , and 𝑓 (𝑛−1)

must be differentiable at 𝑥 . Since 𝑓 (𝑛−1) must exist in a neighborhood of 𝑥 , 𝑓 (𝑛−2) must be
differentiable in that neighborhood.

Theorem7.1.4. Suppose 𝑓 and𝑔 are defined on [𝑎, 𝑏] and are differentiable at a point𝑥 ∈ [𝑎, 𝑏].
Then 𝑓 + 𝑔, 𝑓 𝑔 and 𝑓 /𝑔 are differentiable at 𝑥 , and
(a) (𝑓 + 𝑔)′(𝑥) = 𝑓 ′(𝑥) + 𝑔′(𝑥)
(b) (𝑓 𝑔)′(𝑥) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥)
(c)

(
𝑓

𝑔

)
(𝑥) = 𝑔 (𝑥 ) 𝑓 ′ (𝑥 )−𝑔′ (𝑥 ) 𝑓 (𝑥 )

𝑔2 (𝑥 ) , assuming 𝑔(𝑥) ≠ 0.

Proof. (a) follows from Theorem 6.1.4. For (b), let ℎ = 𝑓 𝑔. Then

ℎ(𝑡) − ℎ(𝑥) = 𝑓 (𝑡) [𝑔(𝑡) − 𝑔(𝑥)] + 𝑔(𝑥) [𝑓 (𝑡) − 𝑓 (𝑥)]

Divide this by 𝑡 − 𝑥 , and note that 𝑓 (𝑡) → 𝑓 (𝑥) as 𝑡 → 𝑥 (using Theorem 7.1.2), (b) follows. For
(c), let ℎ = 𝑓 /𝑔. Then

ℎ(𝑡) − ℎ(𝑥)
𝑡 − 𝑥 =

1
𝑔(𝑡)𝑔(𝑥)

[
𝑔(𝑥) 𝑓 (𝑡) − 𝑓 (𝑥)

𝑡 − 𝑥 − 𝑓 (𝑥)𝑔(𝑡) − 𝑔(𝑥)
𝑡 − 𝑥

]
Letting 𝑡 → 𝑥 , and apply Theorem 6.1.4 and previous Theorem 7.1.2 we get (c). ■

Theorem 7.1.5. Suppose 𝑓 is continuous on [𝑎, 𝑏], 𝑓 ′(𝑥) exists at some point 𝑥 ∈ [𝑎, 𝑏], 𝑔 is
defined on an interval 𝐼 which contains the range of 𝑓 , and 𝑔 is differentiable at the point 𝑓 (𝑥).
If ℎ(𝑡) = 𝑔(𝑓 (𝑡)), (𝑎 ≤ 𝑡 ≤ 𝑏), then ℎ is differentiable at 𝑥 , and ℎ′(𝑥) = 𝑔′(𝑓 (𝑥)) 𝑓 ′(𝑥).

Proof. Let 𝑦 = 𝑓 (𝑥). By the definition of the derivative, we have

𝑓 (𝑡) − 𝑓 (𝑥) = (𝑡 − 𝑥) [𝑓 ′(𝑥) + 𝑢 (𝑡)]

𝑔(𝑠) − 𝑔(𝑦) = (𝑠 − 𝑦) [𝑔′(𝑦) + 𝑣 (𝑠)]
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where 𝑡 ∈ [𝑎, 𝑏], 𝑠 ∈ 𝐼 and 𝑢 (𝑡) → 0 as 𝑡 → 𝑥 , 𝑣 (𝑠) → 0 as 𝑠 → 𝑦. Let 𝑠 = 𝑓 (𝑡). Then

ℎ(𝑡) − ℎ(𝑥) = 𝑔(𝑓 (𝑡)) − 𝑔(𝑓 (𝑥))

= [𝑓 (𝑡) − 𝑓 (𝑥)] · [𝑔′(𝑦) + 𝑣 (𝑠)]

= (𝑡 − 𝑥) [𝑓 ′(𝑥) + 𝑢 (𝑡)] · [𝑔′(𝑦) + 𝑣 (𝑠)]

or, if 𝑡 ≠ 𝑥

ℎ(𝑡) − ℎ(𝑥)
𝑡 − 𝑥 = [𝑔′(𝑦) + 𝑣 (𝑠)] · [𝑓 ′(𝑥) + 𝑢 (𝑡)]

Letting 𝑡 → 𝑥 , we have that 𝑠 → 𝑦 by the continuity of 𝑓 , so that the right-hand side of the above
equation tends to 𝑔′(𝑦) 𝑓 ′(𝑥), as claimed. ■

We now consider generalizations of the derivative.

Definition 7.1.6. Let 𝑉 be a Banach space and 𝑓 : 𝑉 →𝑊 . The Fréchet derivative of 𝑓 at
𝑥 is a continuous lineara mapping 𝐷𝑓 [𝑥] : 𝑉 →𝑊 such that

lim
ℎ→0

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷𝑓 [𝑥] (ℎ)∥
ℎ

= 0.

If 𝑉 = R𝑛 and 𝑊 = R, the Fréchet derivative is also called the differential or total
derivative. If 𝑉 = R𝑛 and𝑊 = R𝑚 , the Fréchet derivative is also called the Jacobian of 𝑓 .

aIn finite-dimensional spaces, linear mappings are always continuous, but in infinite-dimensional spaces, this
is not always the case.

Note that the ℎ in the above definition is a vector, which differs from the 1-D definition of the
derivative. This might not have been the way you were first taught derivatives in higher
dimensions, but we will now see the relationships to the partial derivatives.

Definition 7.1.7. Let 𝑓 : 𝑉 → 𝑊 , 𝑥 ∈ 𝑈 ⊆ 𝑉 where 𝑈 is open and 𝑣 ∈ 𝑉 . The Gâteaux
derivative 𝑓 at 𝑥 in direction 𝑣 is

𝑑 𝑓 (𝑥 ; 𝑣) = lim
ℎ→0

𝑓 (𝑥 + ℎ𝑣) − 𝑓 (𝑥)
ℎ

.

Here ℎ is a scalar.
When 𝑉 = R𝑛 and 𝑊 = R, the Gâteaux derivative is also called the directional
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derivative. If 𝑣 is one of the coordinate vectors, say 𝑥𝑖 , then the Gateaux derivative is just
the partial derivative with respect to that coordinate, 𝜕𝑓

𝜕𝑥𝑖
(𝑥).

We have the following relationships between the Gâteaux and Fréchet derivatives.

Theorem 7.1.8. Let 𝑓 : 𝑉 →𝑊 be a function.

(a) If 𝑓 is Fréchet differentiable at 𝑥 , then the Gâteaux derivative 𝑑 𝑓 (𝑥 ; 𝑣) exists for all 𝑣 ∈ 𝑉
and 𝑑 𝑓 (𝑥 ; 𝑣) = 𝐷𝑓 [𝑥] (𝑣).

(b) If 𝑓 has Gâteaux derivatives that are linear in 𝑣 and continuous in 𝑥 in the sense that ∀𝜀 > 0,
there exists 𝛿 > 0 such that ∥𝑥 ′ − 𝑥 ∥ < 𝛿 implies

sup
𝑣∈𝑉

∥𝑑 𝑓 (𝑥 ′, 𝑣) − 𝑑 𝑓 (𝑥 ; 𝑣)∥
∥𝑣 ∥ < 𝜀,

then 𝑓 is Fréchet differentiable and the Fréchet derivative satisfies 𝐷𝑓 [𝑥] (𝑣) = 𝑑 𝑓 (𝑥 ; 𝑣).

The latter definition implies that Fréchet differentiability is a more stringent requirement than
Gâteaux differentiability. A simple example is the 1-D function 𝑓 (𝑥) = |𝑥 | which is Gâteaux
differentiable at 𝑥 = 0 but not Frêchet differentiable there.

Definition 7.1.9. Let 𝑓 : R𝑛 → R. The gradient of 𝑓 at 𝑥 is the vector of partial derivatives

∇𝑓 (𝑥) =
[
𝜕𝑓

𝜕𝑥1
(𝑥) 𝜕𝑓

𝜕𝑥2
(𝑥) · · · 𝜕𝑓

𝜕𝑥𝑛

] ′
.

If 𝑓 is Fréchet differentiable at 𝑥 , then ∇𝑓 (𝑥) is a matrix representation of the linear
transformation 𝐷𝑓 [𝑥].

Natural analogies of the sum, product and chain rules hold for the Fréchet derivatives. Here
are some convenient examples of Fréchet derivatives.

Example. Here are some examples:

(a) Let A be an𝑚 × 𝑛 real matrix and let 𝑓 : R𝑛 → R𝑚 be 𝑓 (x) = Ax. Then 𝐷𝑓 [x] = A.

(b) Let A be an𝑚 × 𝑛 real matrix and let 𝑓 : R𝑚 → R𝑛 be 𝑓 (x) = x′A. Then 𝐷𝑓 [x] = A′.

(c) Let A be an 𝑚 × 𝑛 real matrix and let 𝑓 : R𝑚 → R𝑛 be a differentiable function. Then
𝐷 (A𝑓 ) [x] = A𝐷𝑓 [x].

(d) Let A be an 𝑛 × 𝑛 real matrix and let 𝑓 : R𝑛 → R be 𝑓 (x) = x′Ax. Then 𝐷𝑓 [x] = x′(A + A′).
If A is a symmetric matrix, then 𝐷𝑓 [x] = 2x′A.
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♣

We now consider higher Fréchet derivatives of a function. Suppose that 𝑓 : 𝑉 → 𝑊 is
differentiable at all points in an open subset𝑈 ⊆ 𝑉 . It follows that its derivative, understood now
as a function of 𝑥 ∈ 𝑈 , is a function from 𝑈 to the space 𝐿(𝑉 ,𝑊 ) of all bounded linear operators
from 𝑉 to𝑊 , so 𝐷𝑓 : 𝑈 → 𝐿(𝑉 ,𝑊 ). This function space 𝐿(𝑉 ,𝑊 ) is a normed vector space (and
thus a metric space), with a norm given by

∥𝑇 ∥𝑜𝑝 = sup
𝑣:∥𝑣 ∥≤1

∥𝑇𝑣 ∥.

The function 𝐷𝑓 then may also have a derivative, called the second Fréchet derivative 𝐷2 𝑓

which is a map 𝐷2 𝑓 : 𝑈 → 𝐿(𝑉 , 𝐿(𝑉 ,𝑊 )).
To make it easier to work with second-order derivatives, the space on the right-hand side is

identified with the Banach space 𝐿2(𝑉 ×𝑉 ,𝑊 ) of all continuous bilinear maps from 𝑉 to𝑊 . An
element 𝜑 in 𝐿(𝑉 , 𝐿(𝑉 ,𝑊 )) is thus identified with𝜓 in 𝐿2(𝑉 ×𝑉 ,𝑊 ) such that for all 𝑥,𝑦 ∈ 𝑉 ,

𝜑 (𝑥) (𝑦) = 𝜓 (𝑥,𝑦) .

If 𝑓 : R𝑛 → R, the associated matrix of this transformation on 𝐿2(𝑉 ×𝑉 ,𝑊 ) is called theHessian

H𝑓 =



𝜕2 𝑓

𝜕𝑥2
1

𝜕2 𝑓
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓

𝜕𝑥2
2

· · · 𝜕2 𝑓
𝜕𝑥2𝜕𝑥𝑛

...
...

. . .
...

𝜕2 𝑓
𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓

𝜕𝑥2
𝑛


One may continue on in this fashion, obtaining (as long as the relevant limits exist) the 𝑛-th
Fréchet derivatives, which will be functions

𝐷𝑛 𝑓 : 𝑈 → 𝐿𝑛 (𝑉 ×𝑉 × · · · ×𝑉 ,𝑊 )

taking values in the Banach space of continuous multilinear maps in 𝑛 arguments from 𝑉 to𝑊 .
Recursively, a function 𝑓 is 𝑛 + 1 times differentiable on 𝑈 if it is 𝑛 times differentiable on 𝑈

and for each 𝑥 ∈ 𝑈 there exists a continuous multilinear map 𝐴 of 𝑛 + 1 arguments such that the
limit

lim
ℎ𝑛+1→0

∥𝐷𝑛 𝑓 (𝑥 + ℎ𝑛+1) (ℎ1, ℎ2, . . . , ℎ𝑛) − 𝐷𝑛 𝑓 (𝑥) (ℎ1, ℎ2, . . . , ℎ𝑛) −𝐴 (ℎ1, ℎ2, . . . , ℎ𝑛, ℎ𝑛+1)∥
∥ℎ𝑛+1∥

= 0
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exists uniformly for ℎ1, ℎ2, . . . , ℎ𝑛 in bounded sets in 𝑉 . In that case, 𝐴 is the (𝑛 + 1)st derivative
of 𝑓 at 𝑥 .

An important result called Schwarz’s Theorem (or Clairaut’s Theorem or Young’s Theorem)
tells us that these maps are symmetric.

Theorem 7.1.10. Let 𝑓 : R𝑛 → R𝑚 be twice continuously differentiable. Then

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
=

𝜕2 𝑓

𝜕𝑥 𝑗 𝜕𝑥𝑖
.

More generally, the 𝑛th Fréchet derivatives are symmetric multilinear maps on 𝐿𝑛 (𝑉 ×𝑉 × ... ×
𝑉 ,𝑊 ), so that permuting the order of inputs has no effect on the output.

Definition 7.1.11. If the 𝑘 th derivative of function 𝑓 : 𝑈 → 𝑉 exists and is continuous on𝑈 ,
then we say that 𝑓 is 𝑘-times continuously differentiable. The set of 𝑘-times continuously
differentiable functions from 𝑈 to 𝑉 is denoted 𝐶𝑘 (𝑈 ,𝑉 ). If 𝑈 ⊆ R and 𝑉 ⊆ R, then we just
write 𝑓 ∈ 𝐶𝑘 . The set 𝐶𝑘 (𝑈 ,𝑉 ) is a vector space of functions. A function is called smooth if
𝑓 ∈ 𝐶𝑘 (𝑈 ,𝑉 ) for all 𝑘 ∈ N.

7.2 Local approximations

Let us return to the real-valued setting. We will introduce some important theorems called the
mean value theorems which will allow us to derive the important Taylor expansion of a function.
To do so, we will need to introduce some machinery regarding local maxima of functions (which
will play a very large role later in these notes).

Definition 7.2.1. Let 𝑓 be a real-valued function defined on a metric space 𝑋 . We say that
𝑓 has a local maximum at a point 𝑝 ∈ 𝑋 if there exists 𝛿 > 0 such that 𝑓 (𝑞) ≤ 𝑓 (𝑝) for all
𝑞 ∈ 𝑋 with 𝑑 (𝑝, 𝑞) < 𝛿 .

Theorem 7.2.2. Let 𝑓 be defined on [𝑎, 𝑏]; if 𝑓 has a local maximum at a point 𝑥 ∈ (𝑎, 𝑏), and
if 𝑓 ′(𝑥) exists, then 𝑓 ′(𝑥) = 0.

Proof. Pick 𝛿 > 0 such that 𝑎 < 𝑥 −𝛿 < 𝑥 < 𝑥 +𝛿 < 𝑏. If 𝑥 −𝛿 < 𝑡 < 𝑥 , then 𝑓 (𝑡 )−𝑓 (𝑥 )
𝑡−𝑥 ≥ 0. Letting

𝑡 → 𝑥 , we see that 𝑓 ′(𝑥) ≥ 0. If 𝑥 < 𝑡 < 𝑥 + 𝛿 , then 𝑓 (𝑡 )−𝑓 (𝑥 )
𝑡−𝑥 ≤ 0, which shows that 𝑓 ′(𝑥) ≤ 0.

Hence 𝑓 ′(𝑥) = 0. ■
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Theorem 7.2.3 (Mean value theorem). Let 𝑓 and 𝑔 be real functions continuous on [𝑎, 𝑏]
and differentiable in (𝑎, 𝑏).

(a) (Lagrange) There exists an 𝑥 ∈ (𝑎, 𝑏) such that 𝑓 (𝑏) − 𝑓 (𝑎) = (𝑏 − 𝑎) 𝑓 ′(𝑥).

(b) (Cauchy) There exists an 𝑥 ′ ∈ (𝑎, 𝑏) such that [𝑓 (𝑏) − 𝑓 (𝑎)]𝑔′(𝑥 ′) = [𝑔(𝑏) − 𝑔(𝑎)] 𝑓 ′(𝑥 ′).

Proof. Weprove (b) only, fromwhich (a) follows by setting𝑔(𝑥) = 𝑥 . Letℎ(𝑡) = [𝑓 (𝑏)−𝑓 (𝑎)]𝑔(𝑡)−
[𝑔(𝑏) − 𝑔(𝑎)] 𝑓 (𝑡), (𝑎 ≤ 𝑡 ≤ 𝑏). Then ℎ is continuous on [𝑎, 𝑏], ℎ is differentiable in (𝑎, 𝑏) and
ℎ(𝑎) = 𝑓 (𝑏)𝑔(𝑎) − 𝑓 (𝑎)𝑔(𝑏) = ℎ(𝑏). It needs to be shown that ℎ′(𝑥) = 0 for some 𝑥 ∈ (𝑎, 𝑏). If ℎ is
constant, this holds for every 𝑥 ∈ (𝑎, 𝑏). If ℎ(𝑡) > ℎ(𝑎) for some 𝑡 ∈ (𝑎, 𝑏), let 𝑥 be a point on [𝑎, 𝑏]
at which ℎ attains its maximum (which exists by Theorem 6.1.12). Observe that 𝑥 ∈ (𝑎, 𝑏), and
then by Theorem 7.2.2, ℎ′(𝑥) = 0. If ℎ(𝑡) < ℎ(𝑎) for some 𝑡 ∈ (𝑎, 𝑏), the same argument applies if
we choose for 𝑥 a point on [𝑎, 𝑏] where ℎ attains its minimum. ■

Theorem 7.2.4 (Taylor’s theorem). Suppose 𝑓 is a real valued function on [𝑎, 𝑏], 𝑛 a positive
integer, 𝑓 (𝑛−1) is continuous on [𝑎, 𝑏], 𝑓 (𝑛) (𝑡) exists for every 𝑡 ∈ (𝑎, 𝑏). Let 𝛼, 𝛽 ∈ [𝑎, 𝑏], 𝛼 ≠ 𝛽 ,
and define

𝑃 (𝑡) =
𝑛−1∑︁
𝑘=0

𝑓 (𝑘 ) (𝛼)
𝑘!

(𝑡 − 𝛼)𝑘

Then there exists a point 𝑥 ∈ (𝛼, 𝛽) such that

𝑓 (𝛽) = 𝑃 (𝛽) + 𝑓 (𝑛) (𝑥)
𝑛!

(𝛽 − 𝛼)𝑛

When 𝑛 = 1, this is just the mean value theorem. It also gives us the famous interpretation of
𝑓 ′(𝑥) as the (gradient of) the local linear approximation of 𝑓 at point 𝑥 . In general, it shows that
any 𝑓 ∈ 𝐶𝑛 can be approximated by a polynomial of degree 𝑛 − 1, and allows us to estimate the
error, if we know bounds on |𝑓 (𝑛) (𝑥) |.

Proof. Let𝑀 be the number defined by

𝑓 (𝛽) = 𝑃 (𝛽) +𝑀 (𝛽 − 𝛼)𝑛

It needs to be shown that 𝑛!𝑀 = 𝑓 (𝑛) (𝑥) for some 𝑥 ∈ (𝛼, 𝛽). Let 𝑔(𝑡) ≡ 𝑓 (𝑡) − 𝑃 (𝑡) −𝑀 (𝑡 − 𝛼)𝑛

for 𝑎 ≤ 𝑡 ≤ 𝑏. Since 𝑃 (𝑛) (𝑡) = 0, we have that



120 7 Differentiation

𝑔 (𝑛) (𝑡) = 𝑓 (𝑛) (𝑡) − 𝑛!𝑀 (𝑎 < 𝑡 < 𝑏)

Hence, it needs to be shown that 𝑔 (𝑛) (𝑥) = 0 for some 𝑥 ∈ (𝛼, 𝛽).
Observe that 𝑃 (𝑘 ) (𝛼) = 𝑓 (𝑘 ) (𝛼) for 𝑘 = 0, ..., 𝑛 − 1 and hence

𝑔 (𝑘 ) (𝛼) = 𝑓 (𝑘 ) (𝛼) − 𝑃 (𝑘 ) (𝛼) + 𝑛!
(𝑛 − 𝑘)!𝑀 (𝛼 − 𝛼) = 0 𝑘 = 0, ..., 𝑛 − 1

By the definition of 𝑀 , 𝑔(𝛽) = 0. By the mean value theorem, there exists 𝑥1 ∈ (𝛼, 𝛽) such that
𝑔(𝛽) −𝑔(𝛼) = (𝛽−𝛼)𝑔′(𝑥1), and hence 𝑔′(𝑥1) = 0. Another application of the mean value theorem
implies that there exists 𝑥2 ∈ (𝛼, 𝑥1) such that 𝑔′′(𝑥2) = 0. Iterating the argument, after 𝑛 steps
we arrive at the conclusion that 𝑔 (𝑛) (𝑥𝑛) = 0 for some 𝑥𝑛 ∈ (𝛼, 𝑥𝑛−1). ■

This theorem extends quite generally to Banach spaces.

Theorem 7.2.5 (Taylor’s Theorem in Banach Spaces). If 𝑓 ∈ 𝐶𝑘 (𝑈 ,𝑌 ), then for all x ∈ 𝑈
and h ∈ 𝑋 such that the line segment ℓ (x, x + h) = {(1 − 𝑡)x + 𝑡 h : 𝑡 ∈ [0, 1]} lies in 𝑈 , there
holds

𝑓 (x + h) = 𝑓 (x) + 𝐷𝑓 (x)h + 𝐷
2 𝑓 (x)h(2)

2!
+ · · · + 𝐷

𝑘−1 𝑓 (x)h(𝑘−1)

(𝑘 − 1)! + 𝑅𝑘

where the remainder 𝑅𝑘 satisfies

𝑅𝑘 (x, h) ≤
max𝑡 ∈[0,1] ∥𝐷𝑘 𝑓 (x + th)∥

𝑘!
∥h∥k.

The proof is by induction using Taylor’s Theorem and is omitted.
Using Taylor’s Theorem, we can define a few important functions.

Definition 7.2.6. Let 𝑥 ∈ C. The exponential function 𝑒𝑥 or exp(𝑥) is defined by

𝑒𝑥 = 1 + 𝑥 + 1
2
𝑥2 + 1

6
𝑥3 + ... =

∞∑︁
𝑖=0

𝑥𝑖

𝑖!
.

Equivalently (check this!), 𝑒𝑥 may be defined by the relation 𝑑
𝑑𝑥
𝑒𝑥 = 𝑒𝑥 .

The sine function is defined by

sin(𝑥) = 𝑥 − 1
6
𝑥3 + 1

120
𝑥5 − ... =

∞∑︁
𝑖=0

(−1)𝑖𝑥2𝑖+1

(2𝑖 + 1)!
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while the cosine function is defined by

cos(𝑥) = 1 − 1
2
𝑥2 + 1

24
𝑥4 − ... =

∞∑︁
𝑖=0

(−1)𝑖𝑥2𝑖

(2𝑖)! .

You can check the following facts using these definitions:

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥)
𝑑

𝑑𝑥
sin(𝑥) = cos(𝑥)

𝑑

𝑑𝑥
cos(𝑥) = − sin(𝑥) .

7.3 Implicit and Inverse Function Theorems

Given that the Fréchet derivative gives a local linear approximation to a function at a given point,
and linear mappings are easy to invert, knowing the Fréchet derivative should allow us to know
a lot about the inverse of a mapping, at least locally. That is the idea of two related theorems: the
implicit and inverse function theorems.

The implicit function problem asks if 0 = 𝐹 (𝑥,𝑦), can we find a function 𝑓 such that𝑦 = 𝑓 (𝑥)?
If 𝐹 is chosen as 𝑥 −𝑔(𝑦), then 𝑓 is just the inverse 𝑔−1 at 𝑥 , so that these two problems are closely
related.

We have the following theorem

Theorem 7.3.1 (Implicit Function Theorem). Let 𝑋,𝑌 and 𝑍 be Banach spaces, and 𝑈 ⊆
𝑋 × 𝑌 an open subset with 𝐹 ∈ 𝐶1(𝑈 ,𝑍 ). If (𝑥0, 𝑦0) ∈ 𝑈 is such that 𝐷𝑦𝐹 (𝑥0, 𝑦0) is a bounded
invertible map from 𝑌 to 𝑍 , then there is an open neighborhood 𝑉 of 𝑥0 and a unique function
𝑓 : 𝑉 → 𝑌 such that

𝐹 (𝑥, 𝑓 (𝑥)) = 𝐹 (𝑥0, 𝑦0), for all 𝑥 ∈ 𝑉 .

Moreover, 𝑓 ∈ 𝐶1(𝑉 ,𝑌 ) with

𝐷𝑓 (𝑥) = −[𝐷𝑦 𝑓 (𝑥, 𝑓 (𝑥))]−1𝐷𝑥 𝑓 (𝑥, 𝑓 (𝑥)) .

The inverse function theorem is a corollary of the above where 𝐹 (𝑥,𝑦) = 𝑥 − 𝑔(𝑦).
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Corollary 7.3.2 (Inverse Function Theorem). Suppose that 𝑋 and 𝑌 are Banach spaces,
𝑈 ⊆ 𝑋 an open subset. Let 𝑔 ∈ 𝐶1(𝑈 ,𝑌 ) and 𝑥0 ∈ 𝑋 . If 𝐷𝑔(𝑥0) has a bounded inverse, then
there exists an open neighborhood 𝑉 of 𝑔(𝑥0) and a unique function 𝑓 : 𝑈 → 𝑉 such that

𝑔(𝑓 (𝑥)) = 𝑥, for all 𝑥 ∈ 𝑈 .

Moreover, 𝑓 is continuously differentiable, with

𝐷𝑓 (𝑥) = [𝐷𝑔(𝑓 (𝑥))]−1.
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Integration is fundamentally about ways to combine infinitesimal data into a single number like
length, area, volume, probability, expectation or other “measures”. In this chapter, we begin by
reviewing the Riemann Integral—the classic formulation of the integral from undergraduate
calculus. We will then talk briefly about the limitations of the Riemann Integral and the
mathematical response to these limitations, belonging to a field called measure theory. Concepts
of measure theory are used all over the place in economics, and yet unfortunately rarely taught
as part of the graduate economics core. Our goal here is to give an extremely brief run-down of
measure theory, to a level where you will understand, at least, why we might need to worry
about problems of measurability occasionally and what someone means when they say they are
assuming a function is ‘measurable’ (you will see this all over the place in economics papers).

8.1 The Riemann Integral

The Riemann integral is the simplest integral to define, and works well for continuous functions
and nearly continuous functions. For now consider a positive, bounded function 𝑓 : R→ R. The
approach of the Riemann integral is to partition the 𝑥-axis into a collection of small intervals, and
erecting two rectangles above these intervals: the first is the largest rectangle entirely below the
graph and one entirely outside the graph area. If by making these intervals sufficiently small, the
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sum of the areas of the inside rectangles and the outside rectangles approach one another, then
that number is called the Riemann Integral of the function.

𝑓 (𝑥)

𝑎 𝑏

𝐴 =

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

𝑓 (𝑥)

𝑥1 𝑥4

𝑛 = 3

𝐴 ≈ 𝑥4 − 𝑥1

3

3∑︁
𝑖=1

𝑓 (𝑥𝑖)

𝑓 (𝑥)

𝑥1 𝑥11

𝑛 = 10

𝐴 ≈ 𝑥11 − 𝑥1

10

10∑︁
𝑖=1

𝑓 (𝑥𝑖)

Definition 8.1.1. Let 𝐼 = [𝑎, 𝑏] ⊆ R be an interval. A partition 𝑃 of 𝐼 consists of a finite
sequences of numbers (𝑥𝑖)𝑛𝑖=1 such that

𝑎 = 𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛−1 ≤ 𝑥𝑛 = 𝑏,

and we denote the intervals as 𝐼1 = [𝑥0, 𝑥1], 𝐼2 = [𝑥1, 𝑥2] and so on. Let P be the set of all
partitions of 𝐼 .

Write 𝑚𝑘 = inf𝑥∈𝐼𝑘 𝑓 (𝑥) and 𝑀𝑘 = sup𝑥∈𝐼𝑘 𝑓 (𝑥), which are well-defined since 𝐹 is
bounded.

The upper and lower Riemann sums of 𝑓 with respect to such a partition are then
defined as

𝑈 (𝑓 ; 𝑃) =
𝑛∑︁
𝑘=1

𝑀𝑘 (𝑥𝑘 − 𝑥𝑘−1)

𝐿(𝑓 ; 𝑃) =
𝑛∑︁
𝑘=1

𝑚𝑘 (𝑥𝑘 − 𝑥𝑘−1)

The upper and lower Riemann integrals of 𝑓 on [𝑎, 𝑏] are defined as∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = inf
𝑃∈P

𝑈 (𝑓 ; 𝑃)∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = sup
𝑃∈P

𝐿(𝑓 ; 𝑃)
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If the upper and lower Riemann integrals are equal, we say that 𝑓 is Riemann integrable
and denote the integral as

∫ 𝑏
𝑎
𝑓 (𝑥)𝑑𝑥 or

∫
𝐼
𝑓 (𝑥)𝑑𝑥 .

We now determine under what conditions the Riemann integral of a function exists.

Definition 8.1.2. The oscillation of a bounded function 𝑓 on a set 𝐴 is

osc
𝐴
𝑓 = sup

𝐴

𝑓 − inf
𝐴
𝑓 .

If the function 𝑓 : [𝑎, 𝑏] → R is bounded and 𝑃 = {𝐼1, 𝐼2, . . . , 𝐼𝑛} is a partition of [𝑎, 𝑏], then

𝑈 (𝑓 ; 𝑃) − 𝐿(𝑓 ; 𝑃) =
𝑛∑︁
𝑘=1

sup
𝐼𝑘

𝑓 · |𝐼𝑘 | −
𝑛∑︁
𝑘=1

inf
𝐼𝑘
𝑓 · |𝐼𝑘 | =

𝑛∑︁
𝑘=1

osc
𝐼𝑘
𝑓 · |𝐼𝑘 | .

So the function𝑓 is integrable if the expression on the right can be brought arbitrarily close to zero.
This implies that a function is integrable if the oscillation of 𝑓 on most intervals is nearly zero,
and the sum of the lengths of the intervals where the oscilattion is large can be made arbitrarily
small. This is sometimes called the Cauchy criterion for integrability.

Theorem 8.1.3. A continuous function on a compact interval is Riemann integrable, as is a
monotonic function.

Here are some simple properties of the Riemann integral.

Theorem 8.1.4. Let 𝑓 and 𝑔 be Riemann integrable function on 𝐼 . The Riemann integral is

(a) Linear:
∫
𝐼
𝑎𝑓 (𝑥) + 𝑔(𝑥)𝑑𝑥 = 𝑎

∫
𝐼
𝑓 (𝑥)𝑑𝑥 +

∫
𝐼
𝑔(𝑥)𝑑𝑥 .

(b) Monotone: if 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐼 ,
∫
𝐼
𝑓 (𝑥)𝑑𝑥 ≤

∫
𝐼
𝑔(𝑥)𝑑𝑥 .

(c) Additive: if 𝑎 < 𝑐 < 𝑏, then
∫ 𝑏
𝑎
𝑓 (𝑥)𝑑𝑥 =

∫ 𝑐
𝑎
𝑓 (𝑥)𝑑𝑥 +

∫ 𝑏
𝑐
𝑓 (𝑥)𝑑𝑥 .

(d) Mean Value Theorem for Integrals: there is an 𝑧 ∈ [𝑎, 𝑏] such that 𝑓 (𝑧) = 1
𝑏−𝑎

∫ 𝑏
𝑎
𝑓 (𝑥)𝑑𝑥 .

We have discussed integration as a measure of area, but another very important property of the
integral is that it reverses differentiation.
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Theorem 8.1.5 (Fundamental Theorem of Calculus). Let [𝑎, 𝑏] ⊆ R.

(a) If 𝐹 : [𝑎, 𝑏] → R is continuous on [𝑎, 𝑏] and differentiable in (𝑎, 𝑏) with 𝐹 ′ = 𝑓 with
𝑓 : [𝑎, 𝑏] → R Riemann integrable, then∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎) .

(b) Let 𝑓 : [𝑎, 𝑏] → R be a continuous function and let 𝐹 : [𝑎, 𝑏] → R be defined by

𝐹 (𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑡)𝑑𝑡 .

Then 𝐹 is uniformly continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) with 𝐹 ′(𝑥) = 𝑓 (𝑥)
for all 𝑥 ∈ (𝑎, 𝑏).

Applying the fundamental theorem of calculus gives the famous integration by parts rule
(assuming 𝑓 , 𝑔 continuous and differentiable, 𝑓 ′, 𝑔′ integrable.∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥)𝑑𝑥 = 𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎) −
∫ 𝑏

𝑎

𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥 .

So the Riemann Integral has a lot of nice properties. You might ask—why do we need a more
complicated version of integration at all? It’s a good question, and I will try and give you three
possible answers.

The first is that there are functions that cannot be Riemann integrated but for which area
“should” be able to be defined. The classic example is the function 𝑓 : [0, 1] → R defined by

𝑓 (𝑥) =


0 if 𝑥 ∈ Q

1 otherwise.

We will use the notation 𝑓 (𝑥) = 1R \ Q for this function, and more generally write 1𝐴 for the
indicator function of set𝐴. It should be clear that 𝑓 is not Riemann integrable - the lower sums of
any partition are always zero and the upper sums are always 1. On the other hand, the rationals
are countable and the irrationals are uncountable - there are a lot more of them than the rationals,
so that the area really “should” be 1.

The second reason is very important conceptually although more subtle. A big problem with
the Riemann integral is that you can have a sequence of Riemann integrable functions 𝑓𝑛
converging pointwise to a bounded function 𝑓 (that is, for all 𝑥 , as a sequence of numbers,
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𝑓𝑛 (𝑥) → 𝑓 (𝑥)) but 𝑓 may not be Riemann integrable. This can make proving facts about limits
of functions very difficult.

A third reason is that alternative, more flexible concepts of integration are not that
complicated! Okay, I might be cheating a bit with that reason, but I hope I can give you some
sense of this in coming sections.

8.2 Measurable sets and spaces

The fundamental difference between the Riemann integral and the Lebesgue integral is the way
in which the partitioning is done: instead of partitioning the function’s domain, the Lebesgue
integral partitions the range and looks at sets of the form 𝑓 −1( [𝑎, 𝑏)). This sounds like a small
difference, but it ends up making a big difference. The sets of the form 𝑓 −1( [𝑎, 𝑏)) can be very
strange, and so the question boils down to how to define the size of these sets. This is where the
concept of a measure comes in.

Ideally, we would be able to assign a measure to every set 𝐴 ⊆ R. Unfortunately it is not
possible to do this in such a way that the measure satisfies certain natural properties.

Definition 8.2.1. Ameasure space is a triple (Ω,B, 𝜇) where:

(a) Ω is a set,

(b) B is a 𝜎-algebra of Ω, that is a family of subsets B ⊆ 2Ω such that

(i) ∅,Ω ∈ B,

(ii) closure under complementation: 𝐵 ∈ B implies Ω \ 𝐵 ∈ B, and

(iii) closure under countable union: if for all 𝑛 ∈ N, 𝐵𝑛 ∈ B then ∪𝑛∈N𝐵𝑛 ∈ B, and

Any set in B is called a B−measurable set.

(c) 𝜇 is ameasure on B, that is a nonnegative function 𝜇 : B → R ∪ {∞} such that

(i) Nonnegativity: 𝜇 (𝐵) ≥ 0 for all 𝐵 ∈ B.

(ii) Null empty set: 𝜇 (∅) = 0.

(iii) Countable additivity: for all countable collections of B-sets, (𝐵𝑛)𝑛∈N, which are
pairwise disjoint, that is, 𝐵𝑚 ∩ 𝐵𝑛 for all𝑚 ≠ 𝑛, we have 𝜇 (∪𝑛∈N𝐵𝑛) =

∑
𝑛∈N 𝜇 (𝐵𝑛).



128 8 Integration and Measure

The pair (𝑋,B𝑋 ) is called a measurable space.

A measure space is a probability space if 𝜇 (Ω) = 1.

For our notion ofmeasure to correspond towhatwe think of as length, area or volume in Euclidean
spaces, we require that the measure satisfy one more important property.

Definition 8.2.2. Let Ω = R𝑛 for some 𝑛 ∈ N and suppose that a 𝜎−algebra B is defined on
Ω such that if 𝐵 ∈ B then 𝐵𝑐 = {𝑐 + 𝑏 |𝑏 ∈ 𝐵} ∈ B for all 𝑐 ∈ Ω. Then measure 𝜇 on B is
translation-invariant if 𝜇 (𝐵) = 𝜇 (𝐵𝑐) for all 𝐵 ∈ B and 𝑐 ∈ Ω.

We now prove the following important theorem.

Theorem 8.2.3. There is no translation-invariant measure on 2R such that 0 < 𝜇 ( [0, 1]) < ∞.

Proof. Suppose 𝜇 were such a measure. Define an equivalence relation on R by 𝑥 ∼ 𝑦 iff 𝑥 −𝑦 ∈ Q
and form the Vitali set 𝐸 by choosing exactly one element from each equivalence class lying in
[0, 1) — note that we are using the axiom of choice to define this set. Let ⊕ be the addition modulo
1 operator, that is for 𝑥,𝑦 ∈ [0, 1],

𝑥 ⊕ 𝑦 =


𝑥 + 𝑦 if 𝑥 + 𝑦 ≤ 1

𝑥 + 𝑦 − 1 if 𝑥 + 𝑦 ≥ 1.

Translation-invariance implies 𝜇 (𝐸 ⊕ 𝑞) = 𝜇 (𝐸). Moreover, [0, 1) = ∪𝑞∈Q∩[0,1)𝐸 ⊕ 𝑞, so that

𝜇 ( [0, 1)) =
∑︁

𝑞∈Q∩[0,1)
𝜇 (𝐸 ⊕ 𝑞) =

∑︁
𝑞∈Q

𝜇 (𝐸) .

Then either 𝜇 (𝐸) = 0 so that 𝜇 ( [0, 1)) = 0 < 𝜇 ( [0, 1]) or 𝜇 (𝐸) > 0 so that 𝜇 ( [0, 1)) = ∞ >

𝜇 ( [0, 1]). ■

So what 𝜎-algebra will we use on R? A starting point is the following.

Definition 8.2.4. The Borel 𝜎-algebra B(R) is the smallest 𝜎−algebra on R containing all
open subset of R (that is, unions and intersections of sets of the form (𝑎, 𝑏), (𝑎,∞), (−∞, 𝑏)
and (−∞,∞)). Any such set is called a Borel set.

Since the Borel sets are a 𝜎-algebra, the complement of any Borel set is Borel, as is the countable
union of any Borel sets. We would like to define a measure on B(R), but doing so seems like a
difficult task: some of the sets in B(R) are very strange, so defining an intuitive notion of length
seems challenging.

Fortunately, it suffices for defining the Lebesgue measure to begin with the intuitive
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definition 𝜇 ((𝑎, 𝑏)) = 𝑏 − 𝑎 for 𝑎 < 𝑏. We then carefully build up the definition of 𝜇 on other sets
B(R) so as to maintain consistency with the definition of a measure. It turns out via the
Caratheodory extension theorem that it is possible to find a measure on all of B(R) which
corresponds to this definition, and the Hahn extension theorem guarantees us that this
extension is unique. For any 𝐵 ∈ B(R) the Lebesgue measure is merely

inf

{∑︁
𝐴∈C

𝜇 (𝐴) : C is a collection of open intervals whose union covers 𝐵

}
.

There is one more intuitive property that we would like our measure to satisfy. Given a
measure space, one would expect that if 𝜇 (𝐵) = 0, and 𝐴 ⊆ 𝐵 that 𝜇 (𝐴) = 0 as well. However,
for 𝐵 in the Borel 𝜎-algebra, the subset 𝐴 may not even be a Borel set. This gap is filled by the
completion of a sigma-algebra. The idea is as follows.

Definition 8.2.5. Let (Ω,B, 𝜇) be a measurable space and let

C = {𝐶 ⊆ Ω : 𝐶 ⊆ 𝐴 for 𝐴 ∈ B with 𝜇 (𝐴) = 0} .

The completion of B is the family B′ constructed by adding and subtracting members of C
to sets in B, that is

B′ = {𝐵′ ⊆ 𝑆 : 𝐵′ = (𝐵 ∪𝐶1) \𝐶2 for 𝐶1,𝐶2 ∈ C} .

The completion of the Borel 𝜎-algebra is called the Lebesgue 𝜎-algebra L(R).

The Lebesgue measure can be extended (by a theorem also known as the Caratheodory extension
theorem) to all sets in L(R), basically by setting 𝜇 (𝐵) = 𝜇 (𝐵′) for sets 𝐵, 𝐵′ as in the definition of
completion above. This extension is still unique by the Hahn extension theorem.

In higher-dimensional Euclidean spaces, the definitions and results are analogous: start by
defining the volume of open-boxes in the intuitive way and take the same approach to build up
to measure of the Borel and Lebesgue sets.

8.3 Measurable functions and the Lebesgue integral

Recall that the motivation of defining the Lebesgue measure was to allow us to extend our
definition of integration to a wider family of functions. The question is now—how wide?
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Definition 8.3.1. Let (𝑋,B𝑋 ) and (𝑌,B𝑌 ) be measurable spaces and 𝑓 : 𝑋 → 𝑌 . The
function 𝑓 is (B𝑋 ,B𝑌 )-measurable if for all 𝐴 ∈ B𝑌 , 𝑓 −1(𝐴) ∈ B𝑋 . If (𝑋,B𝑋 , 𝜇) is a
probability space, then any measurable 𝑓 is called a random variable.

For real-valued functions 𝑓 : R → R, typically we take B𝑋 = L(R) or B(R) and B𝑌 = B(R).
The reason for this slight inconsistency is that the composition of (L,B)-measurable functions
may not be measurable, whereas the composition of (B,B)-measurable functions are always
measurable.

Definition 8.3.2. A simple function 𝑠 : 𝑋 → R is any function of the form

𝑠 = 𝑐1𝜒𝐸1 + 𝑐2𝜒𝐸2 + · · · + 𝑐𝑛𝜒𝐸𝑛

where 𝑐1, . . . , 𝑐𝑛 ∈ R are distinct and {𝐸1, . . . , 𝐸𝑛} is a partition of𝑋 into nonemptymeasurable
sets. The Lebesgue integral of a simple function 𝑠 is defined as∫

𝑋

𝑠𝑑𝜇 =

𝑛∑︁
𝑖=1

𝑐𝑖𝜇 (𝐸𝑖) .

Here the convention 0 · ∞ = ∞ · 0 = 0 is adopted.

Simple functions are great and all, but the following theorems capture the full power of the
Lebesgue integral.

Theorem 8.3.3. Let (𝑋,B𝑋 ) be a measurable space .

(a) Suppose {𝑓𝑛}𝑛∈N with 𝑓𝑛 : 𝑋 → R is a sequence of (B𝑋 ,L(R))-measurable functions
converging pointwise to 𝑓 , that is 𝑓 (𝑥) = lim𝑛→∞ 𝑓𝑛 (𝑥). Then the pointwise limit𝑓 is also
(B𝑋 ,L(R))-measurable.

(b) If 𝑓 is a (B𝑋 ,L(R))- measurable function, there exists a sequence of simple functions 𝑠𝑛 :
𝑋 → R such that 𝑠𝑛 → 𝑓 pointwise. Moreover, if 𝑓 ≥ 0, this sequence 𝑠𝑛 may be chosen to
be pointwise nondecreasing, while if 𝑓 is bounded, then 𝑠𝑛 may be chosen so that 𝑠𝑛 → 𝑓

uniformly on 𝑋 .

The Lebesgue integral of measurable functions is defined using the above theorem.

Definition 8.3.4. Let M+(𝑋,B𝑋 ) be the space of nonnegative-valued
(B𝑋 ,B(R))−measurable functions and M(𝑋,B𝑋 ) be the space of all measurable functions.



8.3 Measurable functions and the Lebesgue integral 131

The Lebesgue integral of 𝑓 ∈ M+(𝑋,B𝑋 ) is defined as∫
𝑋

𝑓 (𝑥)𝑑𝜇 (𝑥) = sup
∫
𝑋

𝜙 (𝑥)𝑑𝜇 (𝑥),

where the supremum is taken over all simple functions 𝜙 ∈ M+(𝑋,B𝑋 ) with 0 ≤ 𝜙 ≤ 𝑓 .
The Lebesgue integral of 𝑓 ∈ M(𝑋,B𝑋 ) is defined by letting 𝑓+(𝑥) = max{𝑓 (𝑥), 0} and
𝑓− (𝑥) = −min{𝑓 (𝑥), 0}. Say that 𝑓 is integrable if the Lebesgue integral of both 𝑓+ and 𝑓−
exist and are finite, and define∫

𝑋

𝑓 (𝑥)𝑑𝜇 (𝑥) =
∫
𝑋

𝑓+(𝑥)𝑑𝜇 (𝑥) −
∫
𝑋

𝑓− (𝑥)𝑑𝜇 (𝑥) .

So that is how to define an integral properly. We now state a variety of useful results about the
Lebesgue integral.

Definition 8.3.5. Let (𝑋,B𝑋 , 𝜇) be a measure space. A set 𝐵 ∈ B𝑋 is a null set if 𝜇 (𝐵) = 0.
A property is said to hold almost everywhere (or just a.e.) if the set of points where the
property does not hold is a null set.

Theorem 8.3.6 (Null sets and measure). Suppose that 𝑓 is a measurable function and that
𝑔 = 𝑓 almost everywhere. Then

∫
𝑔𝑑𝜇 =

∫
𝑓 𝑑𝜇.

Theorem 8.3.7 (Riemann and Lebesgue integrals). Suppose that 𝑓 : [𝑎, 𝑏] → R is Riemann
integrable. Then 𝑓 is Lebesgue integrable on [𝑎, 𝑏] and these integrals coincide.

Theorem 8.3.8 (Monotone Convergence Theorem). Let {𝑓𝑛}𝑛∈N be a monotone increasing
(a.e.) sequence of functions in M+(𝑋,B𝑋 ) converging pointwise (a.e.) to 𝑓 then∫

𝑓 𝑑𝜇 = lim
𝑛→∞

∫
𝑓𝑛𝑑𝜇.

Theorem 8.3.9 (Fatou’s Lemma). Let {𝑓𝑛} be a sequence of functions in M+(𝑋,B𝑋 ), then∫
lim inf 𝑓𝑛𝑑𝜇 ≤ lim inf

∫
𝑓𝑛𝑑𝜇.
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Theorem8.3.10 (Lebesgue’s Dominated Convergence Theorem). Let (𝑋,B𝑋 , 𝜇) be ameasure
space and let {𝑓𝑛}𝑛∈N converge pointwise (a.e.) to a measurable function 𝑓 . If there exists an
integrable function 𝑔 such that |𝑓𝑛 | ≤ 𝑔 for all 𝑛, then 𝑓 is integrable and∫

𝑓 𝑑𝜇 = lim
𝑛→∞

∫
𝑓𝑛𝑑𝜇.

Definition 8.3.11. Let (𝑋,B𝑋 ) be a measurable space.

(a) Measure 𝜇 on (𝑋,B𝑋 ) is 𝜎-finite if 𝜇 (𝑋 ) < ∞.

(b) If 𝜆 and 𝜇 are both 𝜎-finite measures on (𝑋,B𝑋 ), say that 𝜆 is absolutely continuous
with respect to 𝜇, written 𝜆 << 𝜇 if, for all 𝐵 ∈ B𝑋 , 𝜇 (𝐵) = 0 implies 𝜆(𝐵) = 0.

Theorem 8.3.12 (Radon-Nikodym Theorem). Let 𝜆 and 𝜇 be 𝜎-finite measures on (𝑋,B𝑋 )
and suppose that 𝜆 << 𝜇. Then there is an integrable function ℎ such that for all 𝐵 ∈ B𝑋 ,

𝜆(𝐵) =
∫
𝑋

ℎ(𝑥)𝑑𝜇 (𝑥).

The function is unique in the sense that if 𝑔 also has this property, 𝑔 = ℎ almost everywhere. The
function ℎ is called the Radon-Nikodym derivative of 𝜆 with respect to 𝜇 and is written 𝑑𝜆

𝑑𝜇
.

Definition 8.3.13. Let 𝑆 ⊆ R𝑚 and 𝑇 ⊆ R𝑛 and 𝐹 : 𝑆 ⇒ 𝑇 . A measurable selection of 𝐹 is
a measurable function ℎ : 𝑆 → 𝑇 with ℎ(𝑥) ∈ 𝐹 (𝑥) for all 𝑥 ∈ 𝑆 .

Theorem 8.3.14 (Measurable selection theorem). Let 𝑆 ⊆ R𝑚 and 𝑇 ⊆ R𝑛 , and suppose that
𝐹 : 𝑆 ⇒ 𝑇 is a nonempty, compact-valued and upper hemicontinuous correspondence. Then 𝐹
has a measurable selection.

Theorem 8.3.15 (Product Measure Theorem). . Let (𝑋,B𝑋 , 𝜇) and (𝑌,B𝑌 , 𝜆) be measure
spaces. Then there exists a measure 𝜋 on (𝑋 ×𝑌,B𝑋 × B𝑌 ) such that 𝜋 (𝐴 × 𝐵) = 𝜇 (𝐴)𝜆(𝐵) for
𝐴 ∈ B𝑋 and 𝐵 ∈ B𝑌 . Moreover, if 𝜇 and 𝜆 are 𝜎-finite, then 𝜋 is unique and 𝜎-finite.

Definition 8.3.16. Let 𝐸 ⊆ 𝑍 = 𝑋 ×𝑌 . An 𝑥-section of 𝐸 is the set 𝐸𝑥 = {𝑦 ∈ 𝑌 | (𝑥,𝑦) ∈ 𝐸}.
A 𝑦-section is 𝐸𝑦 = {𝑥 ∈ 𝑋 | (𝑥,𝑦) ∈ 𝐸}. Let 𝑓 : 𝑍 → [−∞,∞] and 𝑥 ∈ 𝑋 . The 𝑥-section of 𝑓
is 𝑓𝑥 (𝑦) = 𝑓 (𝑥,𝑦). For 𝑦 ∈ 𝑌 , the 𝑦-section of 𝑓 is 𝑓 𝑦 (𝑥) = 𝑓 (𝑥,𝑦).
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Theorem 8.3.17 (Fubini’S Theorem). . Let (𝑋,B𝑋 , 𝜇) and (𝑌,B𝑌 , 𝜆) be 𝜎-finite and let 𝜋 =

𝜇 × 𝜆. If 𝐹 is integrable with respect to 𝜋 on 𝑍 = 𝑋 ×𝑌 , then the extended real valued functions
defined almost everywhere by 𝑓 (𝑥) =

∫
𝑌
𝐹𝑥𝑑𝜆 and 𝑔(𝑦) =

∫
𝑋
𝐹 𝑦𝑑𝜇 have finite integrals and∫

𝑋
𝑓 𝑑𝜇 =

∫
𝑍
𝐹𝑑𝜋 =

∫
𝑌
𝑔𝑑𝜆. That is to say,∫

𝑋

(∫
𝑌

𝐹 (𝑥,𝑦)𝑑𝜆(𝑦)
)
𝑑𝜇 (𝑥) =

∫
𝑍

𝐹𝑑𝜋 =

∫
𝑌

(∫
𝑋

𝐹 (𝑥,𝑦)𝑑𝜇 (𝑥)
)
𝑑𝜆(𝑦)

8.4 Line integrals

An important kind of integral you will encounter a few times in the core economics sequence is
the line (or path) integral. We will very briefly cover it.

Definition 8.4.1. Let r : [0, 1] → R𝑛 parametrize a curve 𝐶 in R𝑛 which is differentiable
almost everywhere and let 𝐹 : 𝑈 ⊆ R𝑛 → R𝑛 be a vector field. The line integral of 𝐹 in the
direction of r is defined as ∫

𝐶

𝐹 (r) · 𝑑r =
∫ 1

0
𝐹 (r(𝑡)) · r′(𝑡)𝑑𝑡,

if this integral exists. If 𝐶 is closed, the integral is often written with the sign
∮
𝐶
.

The vector r′(𝑡) is a tangent vector to r(𝑡), so that the dot product on the right-hand-side of the
definition is the projection of 𝐹 in the direction along the curve. The line integral is independent
of the parametrization of the curve (i.e., if 𝑠 (𝑡) plots out the same curve as 𝑟 (𝑡), the line integrals
are the same), up to orientation.

Two important facts about the line integral follow.

Theorem 8.4.2 (Fundamental theorem of line integrals). Let 𝐹 be a conservative vector
field, that is, there exists a function 𝐺 : 𝑈 ⊆ R𝑛 → R such that 𝐹 = ∇𝐺 . Then the line integral
is path-independent, that is ∫

𝐶

F(r) · 𝑑r = 𝐺 (r(1)) −𝐺 (r(0)),
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for all r differentiable almost everywhere.

Theorem 8.4.3 (Green’s Theorem). Let 𝐶 be a counterclockwise oriented, differentiable a.e.
closed curve in the plane and let 𝐷 be the region bounded by 𝐶 . Then∮

𝐶

𝐹 · 𝑑r =
∬
𝐷

𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
𝑑𝑥𝑑𝑦.

Green’s Theorem is a special case of the very powerful (generalized) Stokes’ Theorem, which is
occasionally used inmechanism design (and perhaps elsewhere in economics?). Note that Green’s
Theorem implies that a vector field in the plane is conservative if 𝜕𝐹𝑦

𝜕𝑥
− 𝜕𝐹𝑥

𝜕𝑦
= 0 (in fact, this is an

if and only if statement!).

8.5 Counting and combinatorics

We now cover a very important special case of a probability measure, which applies to finite and
countable spaces. We have the following result about such spaces.

Theorem 8.5.1. Let 𝑋 be a finite or countable set and B𝑋 = 2𝑋 . Then each measure on B𝑋 is
of the form

𝜇 (𝐴) =
∑︁
𝑥∈𝐴

𝑝 (𝑥),

for some function 𝑝 : 𝑆 → [0,∞].

Definition 8.5.2. Let 𝑋 be a finite set and B𝑋 = 2𝑋 . The uniform measure on (𝑋,B𝑋 ) is
defined as

𝜇 (𝐴) = |𝐴|
|𝑋 | .

The uniform measure can be interpreted as the probability measure associated with events that
are equally likely.

We now recap some basic principles of counting (thanks to Joe Romano for notes on these).

First basic counting principle

If there are𝑚 elements 𝑎1, . . . , 𝑎𝑚 in one groups and 𝑛 elements 𝑏1, . . . , 𝑏𝑛 in another, there
are𝑚𝑛 possible pairs

(
𝑎𝑖 , 𝑏 𝑗

)
containing one element from each group. If there are 𝑟 groups



8.5 Counting and combinatorics 135

with the 𝑖 th group containing 𝑛𝑖 elements, then there are a total of 𝑛1 · · ·𝑛𝑟 total possible
𝑟 -tuples.

Example: how many license plates numbers possible if the first 3 places must be letters and
the final 4 numbers: 263104

Second basic counting principle

Given a population of 𝑛 elements, there are 𝑛𝑟 different samples when sampling 𝑟 from the
population with replacement (which follows from first principle). When sampling without
replacement, there are

(𝑛)𝑟 = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1) .

In the special case 𝑟 = 𝑛, each sample represents a reordering or permutation of the
population elements, and there are 𝑛 ! such orderings. eg. batting orders in baseball.

Example (Chavalier de Méré’s gambling problem) Suffering some gambling losses, the
following problem was posed to Blaise Pascal in 1654 . Since the probability of getting a 6 in a
toss of a fair die is 1/6, de Méré thought the probability of at least one ace in four tosses is
(1/6) · 4. Then, knowing that the chance of a double six in a toss of a pair of dice is 1/36, or a
sixth as likely as in one toss, he reasoned that he needed to toss the pair 24 times so that the
probability of at least one double 6 is the same as at least one 6 in four tosses. YIKES. For the
first, there are 64 possible outcomes of tossing a die four times and 54 possible outcomes with no
sixes. The probability of at least one 6 in four tosses is 1 − (5/6)4 ≈ 0.5177, while the probability
of at least one double 6 in 24 tosses is 1 − (35/36)24 ≈ 0.4914.

Example (The classical birthday problem) Given a room with 𝑛 people, what is the probability,
𝑝𝑛 , that at least two share the same birthday?

𝑝𝑛 = 1 − 365 · 364 · · · (365 − 𝑛 + 1)
365𝑛

.

Note 𝑝23 = 0.506. Using log(1 + 𝑥) ≈ 𝑥 , we can approximate 𝑝𝑛 :

log (1 − 𝑝𝑛) =
𝑛−1∑︁
𝑖=1

log(1 − 𝑖/365) ≈
𝑛−1∑︁
𝑖=1

−𝑖/365

=
−1
365

· 𝑛(𝑛 − 1)/2

2 So,

𝑝𝑛 ≈ 1 − exp
[
−𝑛(𝑛 − 1)

2 · 365

]
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Suppose you ask people, one by one, their birthday. On average, how many people must be
sampled to get a duplicate? The solution, to come later, is

1 + 364
365

+ 364 · 363
3652 + · · · + 364 · 363 · · · 2 · 1

365364

≈
√︂
𝜋 · 365

2
− 1

3
+ 1

12

√︂
𝜋

2 · 365

Example (Flag displays) Suppose 𝑟 flags of different colors are to be shown on 𝑛 poles in a row.
How many ways can this be done (disregarding the absolute position of the flags on the poles
and limitations of number of flags on any one pole)? For the first flag, there are 𝑛 choices of
poles. For the next, there are 𝑛 + 1 (either of the remaining 𝑛 − 1 poles, or above or below the
first flag). Then, there are 𝑛 + 2 choices for the 3rd, etc. So, there are 𝑛(𝑛 + 1) · · · (𝑛 + 𝑟 − 1)
different possible displays.

Third basic counting principle For 𝑟 ≤ 𝑛,(
𝑛

𝑟

)
=
𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1)

𝑟 !
=

𝑛!
(𝑛 − 𝑟 )!𝑟 ! ,

is the number of possible combination of 𝑛 objects taken 𝑟 at a time (without regard to
ordering).

Example (Poker hands) First, how many poker hands are there? The chance of four of a kind
is

(13) (48)/
(

52
5

)
= 0.00024

Full house is

13 ·
(

4
3

)
· 12 ·

(
4
2

)
(

52
5

) = 0.00144

Example (Mega Millions Lottery) Pick 5 out of 56 (white balls) and 1 from 46 (the mega ball

number in gold). Number of picks is

(
56
5

)
· 46 = 175, 711, 536

Example (Indistinguishable flag displays) Suppose all of the 𝑟 flags are of the same color. How
many ways can they be displayed on 𝑛 poles? If you number the flags from 1 to 𝑟 , they become
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distinguishable and there are 𝑁 = 𝑛(𝑛 + 1) · · · (𝑛 + 𝑟 − 1) ways, from earlier. If they are not
distinguishable, there are 𝑁 /𝑟 ! ways, or (

𝑛 + 𝑟 − 1
𝑟

)

(How many distinguishable distributions where no flagpole is empty?

(
𝑟 − 1
𝑛 − 1

)
. Why? Change

𝑟 to 𝑟 − 𝑛 because need one flag on each pole to begin.) Hence, consider the positive integers 𝑟𝑖
which satisfy

𝑟1 + 𝑟2 + · · · 𝑟𝑛 = 𝑟,

which denotes a possibly configuration of occupancy numbers when placing 𝑟 indistinguishable
balls into 𝑛 cells. The number of distinguishable distributions (or solutions of above equation) is(

𝑛 + 𝑟 − 1
𝑟

)
.

Example (Investments) If you invest 25 K among 4 investments, where each investment must
be in multiples of 1 K, how many strategies are possible? If not all money needs to be invested?

First,

(
28
3

)
. Adding a 5 th investment into a reserve yields for the second

(
29
4

)
.

Example (Hypergeometric probabilities) A committee of 5 is selected from 6 men and 9 women.
If selection is random, what is the probability the committee contains exactly 3 men and 2
women? (

6
3

) (
9
2

)
/
(

15
5

)
= 240/1001

More generally, an urn contains 𝑛 balls, of which 𝑟 are red and 𝑛 − 𝑟 are white. Let 𝑋 by the
number of red balls drawn taking𝑚 without replacement. Then,

𝑃{𝑋 = 𝑘} =
(
𝑟

𝑘

) (
𝑛 − 𝑟
𝑚 − 𝑘

)
/
(
𝑛

𝑚

)
𝑘 = max(0,𝑚 − (𝑛 − 𝑟 )), . . . ,min(𝑚, 𝑟 ) .

(Why the max(0,𝑚 − (𝑛 − 𝑟 )) term? If you take all the 𝑛 − 𝑟 whites, there are still 𝑚 − (𝑛 − 𝑟 )
remaining.) As an example, suppose you capture, tag and release 10 animals. Later, you capture
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20 , and let 𝑋 be the number of tagged animals out of the 10 . If there are 𝑛 "alive", then

𝑃 (𝑋 = 𝑘) =
(

10
𝑘

) (
𝑛 − 10
20 − 𝑘

)
/
(
𝑛

20

)
.

If you actually observe 𝑋 = 4, you can estimate 𝑛 as the value maximizing(
10
4

) (
𝑛 − 10

16

)
/
(
𝑛

20

)
the value is �̂� = 50.

Here are some important facts to know about
(
𝑛
𝑘

)
.

Theorem 8.5.3. The binomial coefficient
(
𝑛
𝑘

)
satisfies the following:

(a) Recursive formula:
(
𝑛
𝑘

)
=

(
𝑛−1
𝑘−1

)
+

(
𝑛−1
𝑘

)
for all 1 ≤ 𝑘 ≤ 𝑛 − 1.

(b) Symmetry:
(
𝑛
𝑘

)
=

(
𝑛
𝑛−𝑘

)
.

(c) Binomial formula: (𝑥 + 𝑦)𝑛 =
∑𝑛
𝑘=0

(
𝑛
𝑘

)
𝑥𝑘𝑦𝑛−𝑘 .

(d) Sums:
∑𝑛
𝑘=0

(
𝑛
𝑘

)
= 2𝑛 .

(e) Stirling’s Formula: 𝑛! ∼
√

2𝜋𝑛
(
𝑛
𝑒

)𝑛 (by ∼ here, I mean the ratio of the two sides tends to 1
as 𝑛 → ∞).

Back to measure theory...
The counting measure is an example of a discrete measure on R, which is a sequence of

numbers {𝑠𝑛}𝑛∈N such that 𝜇 (R \ {𝑠𝑛}𝑛∈N) = 0. That is, the measure is concentrated on a
(countable) sequence of numbers. These points are called the atoms of the measure. Discrete
measures are important to understand given the following important theorem due to Lebesgue.

Theorem 8.5.4. Let 𝜇 be a measure on (R,B(R)). Then

𝜇 = 𝜇𝑎𝑐 + 𝜇𝑠𝑐 + 𝜇𝑑 ,

where 𝜇𝑎𝑐 is absolutely continuous with respect to the Lebesgue measure, 𝜇𝑑 is a discrete measure
and 𝜇𝑐𝑠 is a singular continuous measure, that is, 𝜇𝑐𝑠 is zero on all points 𝑥 ∈ R and zero on
the complement of some set 𝐵 of Lebesgue measure zero.
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9.1 Convex sets

We briefly introduced convexity earlier during our discussion of fixed point theorems, but now
we will approach the topic in more detail because of its importance to the study of optimization
problems.

Definition 9.1.1. A set 𝑋 ⊆ R𝑛 is convex if for any x, y ∈ 𝑋 , we have 𝜆x + (1 − 𝜆)y ∈ 𝑋
for all 𝜆 ∈ (0, 1). It is strictly convex if for any x, y ∈ 𝑋 , x ≠ y and 𝜆 ∈ (0, 1), we have
𝜆x + (1 − 𝜆)y ∈ int𝑋 .

convex non-convex

Example. The preference relation ⪰ on 𝑋 is convex if for every x ∈ 𝑋 the upper contour set
{y ∈ 𝑋 : y ⪰ x} is convex, i.e. if y ⪰ x and z ⪰ x, then 𝜆y + (1 − 𝜆)z ⪰ 𝑥 for every 𝜆 ∈ (0, 1). ♣

141
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Theorem 9.1.2. If 𝑋 ⊆ R𝑛 is a convex set, then ∑𝑘
𝑖=1 𝜆𝑖x𝑖 ∈ 𝑋 for any x1, ..., x𝑘 ∈ 𝑋 , 𝜆𝑖 ≥ 0 for

𝑖 = 1, ..., 𝑘 and
∑𝑘
𝑖=1 𝜆𝑖 = 1.

Proof. It follows by a standard induction argument from the definition of convexity (where 𝑘 = 2),
inducting to the number 𝑘 . ■

Theorem 9.1.3. The intersection of any number of convex sets is convex.

Non-convex sets can be made convex by filling in any holes.

Definition 9.1.4. The convex hull of a set 𝑋 ⊆ R𝑛 , denoted co(𝑋 ) is the smallest convex
set containing 𝑋 . The closed convex hull of a set 𝑋 ⊆ R𝑛 , denoted co(𝑋 ) is the smallest
closed-and-convex set containing 𝑋 .

Theorem 9.1.5 (Caratheodory’s Theorem). Let 𝑋 ⊆ R𝑛 . Every vector in co(𝑋 ) can be written
as the convex combination of at most 𝑛 + 1 points in 𝑋 .

Theorem 9.1.6. For any set 𝑋 ⊆ R𝑛 ,

co(𝑋 ) = {y ∈ R𝑛 : y =

𝑘∑︁
𝑖=1

𝜆𝑖x𝑖 , where x𝑖 ∈ 𝑋, 𝜆𝑖 ∈ [0, 1], 𝑖 = 1, ..., 𝑘, and
𝑘∑︁
𝑖=1

𝜆1 = 1}

9.2 Separating and Supporting Hyperplanes

In this section, we develop the famous separating and supporting hyperplane theorems that are
very important in economic theory.

Definition 9.2.1. Fix a Euclidean space R𝑛 and two sets 𝑋,𝑌 in R𝑛 .

(a) A hyperplane is a set of the form {𝑥 : 𝑝 · 𝑥 = 𝑐} for some 𝑝 ≠ 0 and 𝑐 ∈ R.

(b) A hyperplane separates 𝑋 and 𝑌 if 𝑋 and 𝑌 lie on different sides of the hyperplane, that
is 𝑝 · 𝑥 ≥ 𝑐 for all 𝑥 ∈ 𝑋 and 𝑝 · 𝑦 ≤ 𝑐 for all 𝑦 ∈ 𝑌 . In that case, we say that 𝑋 and 𝑌 can
be separated.

(c) Strict separation requires that 𝑋 and 𝑌 lie in the open half-spaces, that is, that the
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inequalities above can be replaced by their strict versions. That is 𝑝 · 𝑥 > 𝑐 for all 𝑥 ∈ 𝑋
and 𝑝 · 𝑦 < 𝑐 for all 𝑦 ∈ 𝑌 .

(d) Strong separation requires that 𝑋 and 𝑌 lie in different half-spaces, namely 𝑝 · 𝑥 > 𝑐2

and 𝑝 · 𝑦 < 𝑐1 where 𝑐1 < 𝑐2.

Theorem 9.2.2 (Separating Hyperplane Theorems). Let 𝑋 and 𝑌 be two nonempty convex
subsets of R𝑛 .

(a) Sets 𝑋 and 𝑌 may be separated if and only if 0 ∉ int(𝑋 − 𝑌 ). This holds, in particular, if 𝑋
and 𝑌 are disjoint.

(b) If, in addition, neither𝑋 nor𝑌 contains a half-line in its boundary, i.e., a set of points {𝑥+𝜆𝑦 :
𝜆 ≥ 0}, then 𝑋 and 𝑌 may be strictly separated.

(c) 𝑋 and 𝑌 may be strongly separated if and only if 0 ∉ 𝑋 − 𝑌 . This holds, in particular, if 𝑋
and 𝑌 are disjoint, with both sets closed and one of them bounded (compact).

By taking points on the boundary of a convex set and applying the separating hyperplane
theorem between the point and the set, we obtain the following important result.

Theorem 9.2.3 (Supporting Hyperplane Theorem). Let 𝑋 be a nonempty convex subset of R𝑛

and let 𝑥0 be on the boundary of 𝑋 . Then there exists a nonzero vector 𝑝 ∈ R𝑛 and 𝑐 ∈ R such
that 𝑝 · 𝑥0 = 𝑐 and 𝑝 · 𝑥 ≤ 𝑐 for all 𝑥 ∈ 𝑋 .

Moreover, if 𝑋 is closed and we define the support function 𝜙𝑋 : R𝑛 \ {0} → R by

𝜙𝑋 (𝑝) = inf{𝑐 ∈ R : 𝑝 · 𝑥 ≤ 𝑐 for all 𝑥 ∈ 𝑋 },

we have that
𝑋 =

⋂
𝑝∈R𝑛

{𝑥 ∈ R𝑛 : 𝑝 · 𝑥 ≤ 𝜙𝑋 (𝑝)}.

Exercise 9.1. Prove the following simple case of the separating hyperplane theorem: let 𝑥 ∈ R𝑚

and 𝑌 ⊂ R𝑚 be a convex set with 𝑥 ∉ 𝑌 . Show that {𝑥} and 𝑌 may be separated.

9.3 Convex functions
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Definition 9.3.1. Let 𝑋 ⊆ R𝑛 be a convex set. A function 𝑓 : 𝑋 → R is convex if for any
x, y ∈ 𝑋 and any 𝜆 ∈ (0, 1)

𝑓 (𝜆x + (1 − 𝜆)y) ≤ 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y)

If the inequality is strict whenever x ≠ y, 𝑓 is said to be strictly convex.
A function 𝑓 : 𝑋 → R is concave if for any 𝑥,𝑦 ∈ 𝑋 and 𝜆 ∈ (0, 1),

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) .

Strict concavity is defined similarly to strict convexity.

Example. Consider 𝑓 (𝑥) = 𝑥 versus 𝑓 (𝑥) = 𝑥2; the first is only convex while the second one is
strictly convex. ♣

Theorem 9.3.2 (Equivalent characterizations of convexity). A function 𝑓 : 𝑋 → R is convex
if and only if:

(a) the function 𝑔 : R→ R given by 𝑔(𝑡) = 𝑓 (𝑥 + 𝑡𝑦) is convex for all (𝑥,𝑦) ∈ 𝑋 ×R and 𝑡 such
that 𝑥 + 𝑡𝑦 ∈ 𝑋 .

(b) its epigraph, epi(𝑓 ) = {(𝑥,𝑦) ∈ 𝑋 × R|𝑓 (𝑥) ≤ 𝑦} is a convex set

First-order characterization of convexity: If 𝑓 is differentiable, then 𝑓 is convex if and only
if 𝑋 is convex and 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇𝑓 (𝑥) · (𝑦 − 𝑥) for all 𝑥,𝑦 ∈ 𝑋 .

Second-order characterization of convexity: If 𝑓 is twice differentiable, then 𝑓 is convex
if and only if 𝑋 is convex and its Hessian 𝐷2 𝑓 (𝑥) is positive semi-definite for all 𝑥 ∈ 𝑋 .

Each of these theorems have an analogue for concavity, namely in (a), each such function must
be concave, in (b), the hypograph (defined with the reversed inequality sign) must be convex, in
(c), the inequality is reversed while in (d), the Hessian must be negative semi-definite.

Example. Here are some examples of functions that are convex or concave:

• Exponential: 𝑒𝑎𝑥 is convex on R for any 𝑎.

• Powers: 𝑥𝑎 is convex on R++ when 𝑎 ≥ 1 or 𝑎 ≤ 0, and concave for 0 ≤ 𝑎 ≤ 1.

• Powers of absolute value: |𝑥 |𝑎 is convex on R for 𝑎 ≥ 1.
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• Logarithm: log(𝑥) is concave on R++.

• Negative entropy: 𝑥 log(𝑥) is convex on R++.

• Norms: every norm is convex on R𝑛 :

| |𝜆x + (1 − 𝜆)y| | ≤ | |𝜆x| | + | | (1 − 𝜆)y| | = 𝜆 | |x| | + (1 − 𝜆) | |y| |

• Max: 𝑓 (x) = max{𝑥1, ..., 𝑥𝑛} is convex on R𝑛 .

• Quadratic-over-linear: 𝑓 (𝑥,𝑦) = 𝑥2

𝑦
defined on R × R++ is convex.

• Log-sum-exp: 𝑓 (x) = log (𝑒𝑥1 + ... + 𝑒𝑥𝑛 ) on R𝑛 is convex.

• Geometric mean: 𝑓 (x) =
(∏𝑛

𝑖=1 𝑥𝑖
) 1

2 is concave on R𝑛++.

• Log-determinant: 𝑓 (X) = log det(X) is concave on 𝑆𝑛++ (symmetric positive definite matrices).

♣

Theorem 9.3.3. Here are some operations that preserve convexity:

• Nonnegative weighted sum: 𝑓 = 𝑤1 𝑓1 + ...+𝑤𝑚 𝑓𝑚 is convex if 𝑓1,...,𝑓𝑚 are convex and𝑤 ≥ 0.

• Precomposition with affine mappings: 𝑔(x) = 𝑓 (Ax + b) is convex if 𝑓 is convex.

• Pointwise maximum and supremum: 𝑓 (x) = max{𝑓1(x), 𝑓2(x)} is convex if 𝑓1 and 𝑓2 are
convex. If for each y ∈ 𝐴, 𝑓 (x, y) is convex, then 𝑔(x) = sup𝑦∈𝐴 𝑓 (x, y) is convex.

• Scalar composition: Suppose ℎ : R→ R, 𝑔 : R→ R and 𝑓 (𝑥) = ℎ(𝑔(𝑥)). Asumme that both
ℎ and 𝑔 are twice differentiable. Then

𝑓 ′′(𝑥) = ℎ′(𝑔(𝑥))𝑔′′(𝑥) + ℎ′′(𝑔(𝑥)) (𝑔′(𝑥))2

So, 𝑓 ′′ ≥ 0 (i.e. 𝑓 is convex) if either ℎ′′ ≥ 0, ℎ′ ≥ 0 and 𝑔′′ ≥ 0 (i.e. ℎ is nondecreasing and
convex, and 𝑔 is convex), or ℎ′′ ≥ 0, ℎ′ ≤ 0 and 𝑔′′ ≤ 0 (i.e.ℎ is nonincreasing and convex,
and 𝑔 is concave).

• Vector composition: Now suppose 𝑓 (𝑥) = ℎ(𝑔(𝑥)) = ℎ(𝑔1(𝑥), ..., 𝑔𝑘 (𝑥)), where ℎ : R𝑘 → R,
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𝑔𝑖 : R→ R. Then

𝑓 ′′(𝑥) = 𝑔′(𝑥)𝑇𝐷2ℎ(𝑔(𝑥))𝑔′(𝑥) + ∇ℎ(𝑔(𝑥))𝑇𝑔′′(𝑥)

So 𝑓 is convex if ℎ is convex, nondecreasing in each argument, and 𝑔𝑖 is convex for 𝑖 = 1, ..., 𝑘 ,
or if ℎ is convex, nonincreasing in each argument, and 𝑔𝑖 is concave for 𝑖 = 1, ..., 𝑘 .

• Minimization: If 𝑓 is convex in (𝑥,𝑦), 𝐶 is nonempty convex set, then 𝑔(𝑥) = inf𝑦∈𝐶 𝑓 (𝑥,𝑦)
is convex.

We now discuss some nice consequences of convexity/concavity. The first is a very important
inequality you must know!

Theorem 9.3.4. Any convex function 𝑓 satisfies Jensen’s inequality

𝑓

(
𝑛∑︁
𝑖=1

𝜆𝑖x𝑖

)
≤

𝑛∑︁
𝑖=1

𝜆𝑖 𝑓 (x𝑖)
𝑛∑︁
𝑖=1

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑛

Concave functions satisfy the inequality with a ≥.

Convex functions are very nicely behaved in terms of continuity and differentiability.

Theorem 9.3.5. Let 𝑓 : 𝑈 → R be a convex function defined on an open 𝑈 ⊆ R𝑚 . Then

(a) 𝑓 is continuous on 𝑈 ,

(b) 𝑓 is Fréchet differentiable almost everywhere on 𝑈 and Gâteaux differentiable everywhere
on 𝑈 ,

(c) 𝑓 is twice differentiable almost everywhere on 𝑈 .

Even where 𝑓 is not differentiable, an important analogue of the first-order characterization
of convexity holds.

Definition 9.3.6. Let 𝑓 : R𝑛 → R be a convex function. A vector 𝑝 is a subgradient of 𝑓
at 𝑥 if 𝑓 (𝑥) + 𝑝 · (𝑦 − 𝑐) ≤ 𝑓 (𝑦) for all 𝑥,𝑦 ∈ R𝑛 . That is, the subgradients at 𝑥 determine
tangent lines everywhere below the function. The set of all subgradients at 𝑥 is called the
subdifferentiable and is denoted 𝜕𝑓 (𝑥).

We may similarly define the supergradients of a concave function, with the resulting
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superdifferential denoted 𝜕∗ 𝑓 (𝑥), where these determine tangent lines everywhere above
the function.

Theorem 9.3.7 (Properties of the subdifferential). Let 𝑓 : R𝑛 → R be a convex function.

(a) The subdifferential 𝜕𝑓 (𝑥) is a closed, convex set at all 𝑥 ∈ R𝑛 .

(b) If 𝑓 is continuous, then 𝜕𝑓 (𝑥) ≠ ∅ for all 𝑥 and 𝜕𝑓 is a lower hemicontinuous correspondence.
Moreover, 𝜕𝑓 is monotone, that is for all 𝑠𝑥 ∈ 𝜕𝑓 (𝑥) and 𝑠𝑦 ∈ 𝜕𝑓 (𝑦), (𝑠𝑦 − 𝑠𝑥 ) · (𝑦 − 𝑥) ≥ 0.

(c) Wherever 𝑓 is differentiable, 𝜕𝑓 (𝑥) = {∇𝑓 (𝑥)} and wherever the subdifferential is single-
valued, 𝑓 is differentiable at that point.

Subdifferentials and superdifferentials will be important in producer and consumer theory. As
a preview, think of 𝑓 as a concave utility function. Then 𝜕𝑓 is the inverse demand correspondence!

This very important theorem tells us why this discussion of convexity belongs in the section
on optimization.

Theorem 9.3.8 (First-order subdifferential characterization of minimum). Let 𝑓 : R𝑛 → R

be a continuous convex function. Then 𝑥 ∈ R𝑛 is a global minimzer of 𝑓 if and only if 0 ∈ 𝜕𝑓 (𝑥).

Here is another nice consequence of convexity.

Theorem 9.3.9. Let 𝑋 be a convex subset of R𝑛 . Then

(a) If 𝑓 is concave, then for all 𝑟 ∈ R, the upper contour set {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 } is convex.

(b) If 𝑓 is convex, then for all 𝑟 ∈ R, the lower contour set {x ∈ 𝑋 : 𝑓 (x) ≤ 𝑟 } is convex.

In many economic problems, this last property of concave functions—the convexity of upper
contour sets—is exactly what we are after. However, concavity is not strictly necessary for this
result. Instead it often suffices to assume the following.

Definition 9.3.10. Suppose 𝑓 : 𝑋 → R, where 𝑋 is a convex subset of R𝑛 .

(a) The function 𝑓 is quasiconcave if 𝑓 (𝑎x + (1 − 𝑎)y) ≥ min{𝑓 (x), 𝑓 (y)} for all x, y ∈ 𝑋
and 𝑎 ∈ [0, 1].

(b) The function 𝑓 is strictly quasiconcave if 𝑓 (𝑎x + (1 − 𝑎)y) > min{𝑓 (x), 𝑓 (y)} for all
x, y ∈ 𝑋 , x ≠ y and 𝑎 ∈ (0, 1).

(c) The function 𝑓 is quasiconvex if 𝑓 (𝑎x+ (1−𝑎)y) ≤ max{𝑓 (x), 𝑓 (y)} for all x, y ∈ 𝑋 and
𝑎 ∈ [0, 1].



148 9 Convexity

(d) The function 𝑓 is strictly quasiconvex if 𝑓 (𝑎x + (1 − 𝑎)y) < max{𝑓 (x), 𝑓 (y)} for all
x, y ∈ 𝑋 , x ≠ y and 𝑎 ∈ (0, 1)

Theorem 9.3.11. A function 𝑓 with convex domain 𝑋 and range R is quasiconcave if and only
if the sets {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 } are convex for every 𝑟 ∈ R. A function 𝑓 with convex domain
𝑋 and range R is quasiconvex if and only if the sets {x ∈ 𝑋 : 𝑓 (x) ≤ 𝑟 } are convex for every
𝑟 ∈ R.

Proof. Let’s prove the first claim. The second claim is proven in a similar way. Suppose 𝑓 is
quasiconcave. Fix 𝑟 ∈ R, and suppose x′ and x′′ are both elements of {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 }. For
𝑎 ∈ [0, 1], 𝑓 (𝑎x′+ (1−𝑎)x′′) ≥ min{𝑓 (x′), 𝑓 (x′′)} ≥ 𝑟 . Thus, 𝑎x′+ (1−𝑎)x′′ ∈ {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 },
and hence {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 } is convex. Conversely, suppose that {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑟 } is a convex
set for every 𝑟 ∈ R. Choose any x′, x′′ and assume without loss of generality that 𝑓 (x′) ≥ 𝑓 (x′′).
Then x′ ∈ {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑓 (x′′)} and x′′ ∈ {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑓 (x′′)}. Convexity of the set
{x ∈ 𝑋 : 𝑓 (x) ≥ 𝑓 (x′′)} implies that, for all 𝑎 ∈ [0, 1], 𝑎x′ + (1 − 𝑎)x′′ ∈ {x ∈ 𝑋 : 𝑓 (x) ≥ 𝑓 (x′′)},
and thus 𝑓 (𝑎x′ + (1 − 𝑎)x′′) ≥ 𝑓 (x′′) = min{𝑓 (x′), 𝑓 (x′′)}. Therefore, 𝑓 is quasiconcave. ■

Theorem 9.3.12. A (strictly) concave function 𝑓 is (strictly) quasiconcave. A (strictly) convex
function 𝑓 is (strictly) quasiconvex.

Proof. The claims for "non-strict versions" follow by combining Theorems 9.3.9 and 9.3.11. The
claims for "strict versions" can be shown in a similar way. ■

Finally, we have the following important theorem about quasiconcavity (it is arguably the
reason we care about quasiconcavity in economics).

Theorem 9.3.13. Let 𝑓 : R𝑛 → R be a quasiconcave function and 𝑔 : R→ R be an increasing
function. Then the composition 𝑔 ◦ 𝑓 is a quasiconcave function.

Note that the same need not be true of concave functions!
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10.1 Optimization problems

Most economic models are based on the solution of optimization problems. These notes outline
some of the basic tools needed to tackle these problems.

Definition 10.1.1. We consider the parametric constrained optimization problem of
the following form:

max
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 )

where 𝑓 : R𝑛 × R𝑘 → R𝑚 is called the objective function, 𝑥 is a choice variable, 𝐷 (𝜃 ) is
the available choice set, and 𝜃 is an exogenous parameter that may affect both the objective
function and the choice set. Let Θ denote the set of all possible parameter values.

149
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Definition 10.1.2. The solution set is defined as

𝑥∗(𝜃 ) = arg max
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 )

The value function is defined as

𝑉 (𝜃 ) ≡ max
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 )

Note that any results derived for a maximization problem can be used in a minimization
problem, which follows from the fact that

𝑥∗(𝜃 ) = arg min
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 ) ⇔ 𝑥∗(𝜃 ) = arg max
𝑥∈𝐷 (𝜃 )

−𝑓 (𝑥, 𝜃 )

and 𝑉 (𝜃 ) = min
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 ) ⇔ 𝑉 (𝜃 ) = − max
𝑥∈𝐷 (𝜃 )

−𝑓 (𝑥, 𝜃 )

There are several questions of interest:

1. When does a solution to the maximization problem exist for each 𝜃?

2. What are the main properties of the solution set and the value function?

3. How can we compute the solution to the problem?

4. How do the solution set and the value function change with the parameters?

10.2 Properties of solutions

This section addressed the first two questions posed in the previous section. To answer these
questions, we will use the notions of continuity and convexity of functions and continuity of
correspondences, discussed in previous lectures.

The following theorem, called the Theorem of the Maximum, or Berge’s Theorem
provides answers on the existence of a solution and continuity properties of the solution set and
the value function.
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Theorem 10.2.1 (Berge’s Theorem of the Maximum). Consider the class of parametric
constrained optimization problems

max
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 )

defined over the set of parameters Θ. Suppose that

(i) 𝐷 : Θ⇒ 𝑋 is continuous (i.e. upper and lower hemicontinuous) and compact valued;

(ii) 𝑓 : 𝑋 × Θ → R is a continuous function.

Then

1. 𝑥∗(𝜃 ) is non-empty for every 𝜃 ∈ Θ;

2. 𝑥∗(𝜃 ) is upper hemicontinuous;

3. 𝑉 is continuous.

The following examples illustrate the role of some of the assumptions in the theorem.

Example. What can happen when 𝐷 is not compact? Consider Θ = [0, 10], 𝐷 (𝜃 ) = (0, 1), and
𝑓 (𝑥, 𝜃 ) = 𝑥 . Then 𝑥∗(𝜃 ) = ∅ for all 𝜃 ∈ Θ. ♣

Example. What can happen if 𝐷 is lower hemicontinuous, but not upper hemicontinuous?
Suppose that Θ = [0, 10], 𝑓 (𝑥, 𝜃 ) = 𝑥 , and

𝐷 (𝜃 ) =

{0} if 𝜃 ≤ 5

[−1, 1] otherwise

The solution is given by

𝑥∗(𝜃 ) =

{0} if 𝜃 ≤ 5

{1} otherwise

which is not upper hemicontinuous. The value function is also discontinuous. ♣
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Example. What can happen if 𝐷 is upper hemicontinuous, but not lower hemicontinuous?
Suppose Θ = [0, 10], 𝑓 (𝑥, 𝜃 ) = 𝑥 , and

𝐷 (𝜃 ) =

{0} if 𝜃 < 5

[−1, 1] otherwise

Then the solution set is given by

𝑥∗(𝜃 ) =

{0} if 𝜃 < 5

{1} otherwise

which is again not upper hemicontinuous. ♣

Example. What can happen if 𝑓 is not continuous? Suppose that Θ = [0, 10], 𝐷 (𝜃 ) = [𝜃, 𝜃 + 1],
and

𝑓 (𝑥, 𝜃 ) =


0 if 𝑥 < 5

1 otherwise

Then the solution set is given by

𝑥∗(𝜃 ) =


[𝜃, 𝜃 + 1] if 𝜃 < 4

[5, 𝜃 + 1] if 4 ≤ 𝜃 < 5

[𝜃, 𝜃 + 1] otherwise

and the value function is given by

𝑉 (𝜃 ) =


0 if 𝜃 < 4

1 otherwise

Therefore, 𝑥∗ is not upper hemicontinuous and 𝑉 is not continuous. ♣
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The following theorem identifies conditions for convexity of the solution set, uniqueness of
the solution, and concavity of the value function.

Theorem 10.2.2. Consider the class of parametric constrained optimization problems

max
𝑥∈𝐷 (𝜃 )

𝑓 (𝑥, 𝜃 )

defined over the convex set of parameters Θ. Supose that

(i) 𝐷 : Θ⇒ 𝑋 is continuous and compact valued;

(ii) 𝑓 : 𝑋 × Θ → R is a continuous function.

Then

1. If 𝑓 (·, 𝜃 ) is a quasiconcave function in 𝑥 for each 𝜃 , and 𝐷 is convex valued, then 𝑥∗ is
convex-valued.

2. If 𝑓 (·, 𝜃 ) is a strictly quasiconcave function in 𝑥 for each 𝜃 , and 𝐷 is convex valued, then 𝑥∗

is single-valued.

3. If 𝑓 is a concave function in (𝑥, 𝜃 ) and 𝐷 is convex-valued, then𝑉 is a concave function and
𝑥∗ is convex-valued.

4. If 𝑓 is a strictly concave function in (𝑥, 𝜃 ) and𝐷 is convex-valued, then𝑉 is a strictly concave
function and 𝑥∗ is single-valued.

Proof. 1. Suppose that 𝑓 (·, 𝜃 ) is a quasiconcave function in 𝑥 for each 𝜃 , and 𝐷 is convex valued.
Pick any 𝑥, 𝑥 ′ ∈ 𝑥∗(𝜃 ). Since 𝐷 is convex-valued, 𝑥𝑎 = 𝑎𝑥 + (1 − 𝑎)𝑥 ′ ∈ 𝐷 (𝜃 ) for all 𝑎 ∈
[0, 1]. Also, by the quasi-concavity of 𝑓 we have that 𝑓 (𝑥𝑎, 𝜃 ) ≥ 𝑓 (𝑥, 𝜃 ) = 𝑓 (𝑥 ′, 𝜃 ). But since
𝑓 (𝑥, 𝜃 ) = 𝑓 (𝑥 ′, 𝜃 ) ≥ 𝑓 (𝑦, 𝜃 ) for all 𝑦 ∈ 𝐷 (𝜃 ), we get that 𝑓 (𝑥𝑎, 𝜃 ) ≥ 𝑓 (𝑦, 𝜃 ) for all 𝑦 ∈ 𝐷 (𝜃 ).
Therefore, 𝑥𝑎 ∈ 𝑥∗(𝜃 ).

2. The proof is by contradiction. Suppose, aiming for a contradiction, that 𝑥∗(𝜃 ) is not single-
valued at 𝜃 , which is to say that 𝑥∗(𝜃 ) contains two distinct points 𝑥 and 𝑥 ′. As before, since
𝐷 is convex-valued, 𝑥𝑎 = 𝑎𝑥 + (1 − 𝑎)𝑥 ′ ∈ 𝐷 (𝜃 ) for all 𝑎 ∈ (0, 1). By the strict quasi-concavity
of 𝑓 (·, 𝜃 ) in 𝑥 , 𝑓 (𝑥𝑎, 𝜃 ) > 𝑓 (𝑥, 𝜃 ) = 𝑓 (𝑥 ′, 𝜃 ), which contradicts the fact that 𝑥 and 𝑥 ′ are
maximizers in 𝐷 (𝜃 ).

3. Suppose that 𝑓 is a concave function in (𝑥, 𝜃 ) and 𝐷 is convex-valued. Since concavity of 𝑓
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in (𝑥, 𝜃 ) implies quasi-concavity of 𝑓 (·, 𝜃 ) in 𝑥 , it follows that 𝑥∗ is convex-valued. For the
concavity of𝑉 , pick any 𝜃, 𝜃 ′ ∈ Θ and let 𝜃𝑎 = 𝑎𝜃 + (1−𝑎)𝜃 ′ for some 𝑡 ∈ [0, 1]. Let 𝑥 ∈ 𝑥∗(𝜃 )
and 𝑥 ′ ∈ 𝑥∗(𝜃 ′), and let 𝑥𝑎 = 𝑎𝑥 + (1 − 𝑎)𝑥 ′. Then

𝑉 (𝜃𝑎) ≥ 𝑓 (𝑥𝑎, 𝜃𝑎)

= 𝑓 (𝑎𝑥 + (1 − 𝑎)𝑥 ′, 𝑎𝜃 + (1 − 𝑎)𝜃 ′)

≥ 𝑎𝑓 (𝑥, 𝜃 ) + (1 − 𝑎) 𝑓 (𝑥 ′, 𝜃 ′)

= 𝑎𝑉 (𝜃 ) + (1 − 𝑎)𝑉 (𝜃 ′)

4. Very similar to 3.
■

10.3 Characterization of Solution

The next step is to learn how to solve optimization problems and characterize the solution to
a particular problem. To do that, we focus on more restricted classes of problems than in the
previous section. To begin with, we will discuss the relatively simple case of equality constraints.
We will then discuss some of the techniques for optimization with inequality constraints.

We will begin by fixing the parameter 𝜃 and characterizing the solution for a given 𝜃 . We will
therefore suppress the 𝜃 in the notation. In the next section, we will return the 𝜃 to the problem,
and consider how 𝜃 influences the solution to the problem, which is called comparative statics.

Equality constraints - Lagrange multipliers

Consider the following problem

max
𝑥∈R𝑛

𝑓 (𝑥)

subject to ℎ(𝑥) = 0.

Here 𝑓 is a real-valued function defined on R𝑛 or an open subset of R𝑛 , while ℎ = (ℎ1, ..., ℎ𝑚)′ is
a function from R𝑛 to R𝑚 . Both are assumed to be in class 𝐶1.

We will now give a rough justification for the method of solution of such problems.
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Each function ℎ𝑖 = 0 defines a surface in R𝑛 which is usually 𝑛 − 1 dimensional, so that the
intersection ℎ = 0 is typically an (𝑛 −𝑚)−dimensional subspace of R𝑛 , called a manifold. Denote
this manifold by𝑀 .

Consider all the curves 𝑥 : R → 𝑀 passing through a point 𝑥 ∈ 𝑀 . The tangent space T𝑥
at 𝑥 is the set of all derivatives of these curves at point 𝑥 . We would like to express this tangent
space in terms of ∇ℎ, which is possible under the following condition.

Definition 10.3.1. The point 𝑥 is called a regular point if the set (∇ℎ𝑖 (𝑥))𝑚𝑖=1 is linearly
independent.

We have the following fact about regular points.

Theorem 10.3.2. Let 𝑥 be a regular point on 𝑀 defined by ℎ(𝑥) = 0. The tangent space of 𝑀
at 𝑥 is the same as {𝑦 : ∇ℎ(𝑥) · 𝑦 = 0}.

Without the assumption that 𝑥 is a regular point, we could only obtain that {𝑦 : ∇ℎ(𝑥) ¤𝑦 = 0} is a
subspace of the tangent space. That is, there would be tangent vectors not satisfying the condition.

We now show that the gradient of 𝑓 at any constrained optimum must be orthogonal to the
tangent space, which is called the tangency condition. Suppose that 𝑓 obtains a local extremum
at 𝑥∗, subject to the constraints that ℎ(𝑥) = 0. Let 𝑦 be any vector in the tangent space at 𝑥∗,
that is there exists a path 𝑥 (𝑡) through 𝑥∗ with derivative 𝑦 at 0, so 𝑥 (0) = 𝑥∗, 𝑥 ′(0) = 𝑦. Since
𝑥∗ is regular, we have that ∇ℎ(𝑥∗) · 𝑦 = 0. Since 𝑥∗ is a constrained optimum of 𝑓 , we have
that 𝑑

𝑑𝑡
𝑓 (𝑥 (𝑡)) |𝑡=0 = 0. But by the chain rule, this implies that ∇𝑓 (𝑥∗) · 𝑦 = 0. Thus ∇𝑓 (𝑥∗) is

orthogonal to any 𝑦 ∈ T .
But since 𝑥∗ is regular, the orthogonal complement of the tangent space is spanned by vectors

of the form ∇ℎ𝑖 , which implies that ∇𝑓 must be a linear combination of such vectors. That gives
us the following important theorem.

Theorem 10.3.3. Let 𝑥∗ be a constrained extremum of 𝑓 subject to ℎ(𝑥) = 0, and assume that
𝑥∗ is a regular point of the constraint set. Then there exist Lagrange multipliers 𝜆 ∈ R𝑚 such
that ∇𝑓 (𝑥∗) + 𝜆 · ∇ℎ(𝑥∗) = 0.

An illustration of this method is below.



156 10 Constrained optimization

−1 −0.5
0.5 1

−1

1

1

2

𝑥

𝑦

𝑓 (𝑥,𝑦) = 𝑐

increasing f

𝑥

𝑦

ℎ(𝑥,𝑦) = 0
constraint

tangency

level sets of f tangency condition

Note that the Lagrange condition is a necessary but not sufficient condition for an extremum.
It also does not tell us whether the extremum of interest is a maximum or a minimum. Note also
that the equation ∇𝑓 (𝑥∗) + 𝜆 · ∇ℎ(𝑥∗) = 0 together with the constraints ℎ(𝑥∗) = 0 give a total of
𝑛+𝑚 equations in 𝑛+𝑚 unknowns 𝑥∗, 𝜆, and thus they comprise sufficient information to identify
candidate solutions. It is convenient to introduce a Lagrangian

L(𝑥, 𝜆) = 𝑓 (𝑥) + 𝜆 · ℎ(𝑥),

with which these conditions may be written 𝐷𝑥L = 0 and 𝐷𝜆L = 0.
Generally, checking whether a candidate optimum is a maximum or a minimum can be quite

annoying. There are necessary and sufficient conditions that are somewhat difficult to check, as
below.

Theorem 10.3.4. Suppose that 𝑥∗ satisfies the necessary conditions for an extremum (with 𝑥∗

a regular point). Then if 𝑥∗ is a local maximum, for all 𝑦 ∈ T𝑥∗ , we have 𝑦′𝐷2L(𝑥∗, 𝜆∗)𝑦 ≤ 0.
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If 𝑥∗ is an extremum satisfying the strict inequality 𝑦′𝐷2L(𝑥∗, 𝜆∗)𝑦 < 0 for all 𝑦 ∈ T𝑥∗ , then
𝑥∗ is a local maximum.

Note that there may be local maxima that for which 𝑦′𝐷2L(𝑥∗, 𝜆∗)𝑦 = 0 for some 𝑦 ∈ T𝑥∗ . For
local minima, the same conditions may be used with the reversed inequality signs.

One (slightly) simpler approach is to analyze the bordered Hessian.

H(L) =


𝜕2L
𝜕𝜆2

𝜕2L
𝜕𝜆𝜕x(

𝜕2L
𝜕𝜆𝜕x

)⊤
𝜕2L
𝜕x2

 =



0 𝜕𝑔

𝜕𝑥1

𝜕𝑔

𝜕𝑥2
· · · 𝜕𝑔

𝜕𝑥𝑛
𝜕𝑔

𝜕𝑥1
𝜕2L
𝜕𝑥2

1

𝜕2L
𝜕𝑥1𝜕𝑥2

· · · 𝜕2L
𝜕𝑥1𝜕𝑥𝑛

𝜕𝑔

𝜕𝑥2
𝜕2L
𝜕𝑥2𝜕𝑥1

𝜕2L
𝜕𝑥2

2
· · · 𝜕2L

𝜕𝑥2𝜕𝑥𝑛
...

...
...

. . .
...

𝜕𝑔

𝜕𝑥𝑛

𝜕2L
𝜕𝑥𝑛𝜕𝑥1

𝜕2L
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2L
𝜕𝑥2

𝑛


=


0 𝜕𝑔

𝜕x(
𝜕𝑔

𝜕x

)⊤
𝜕2L
𝜕x2


The 𝑘-th principal minor is the determinant of the top-left 𝑘 × 𝑘 submatrix in 𝐻 (L). If the

last 𝑛 −𝑚 principal minors of the bordered Hessian is such that the𝑚th minor has sign (−1)𝑚+1

and then the subsequent minors alternate in sign, then the candidate solution is a local maximum.
If the last 𝑛 −𝑚 principal minors are all negative, the candidate solution is a local minimum.

In general, you will not need to check these sufficient conditions in problem sets, but they are
worth keeping in mind as you apply the Lagrangian approach “irl”.

Exercise 10.1. The output of a firm is given by the Cobb-Douglas production function 𝑓 (𝐿, 𝐾) =
2.5𝐿0.45𝐾0.55 where 𝐿 is labor and𝐾 is capital. Each unit of labor costs 40, and each unit of capital
costs 50. The company faces a budget constraint of 500,000 per year. What is the optimal level
of consumption for the firm?

Exercise 10.2. Solve
min
𝑥,𝑦

𝑥 subject to 𝑦2 + 𝑥4 − 𝑥3 = 0.

Inequality constraints

Let us now consider the following problem:

max
𝑥∈R𝑛

𝑓 (𝑥, )

subject to 𝑔(𝑥) ≤ 0 for 𝑘 = 1, ..., 𝐾
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where 𝑓 (·) is a real-valued function defined onR𝑛 while𝑔 = (𝑔1(·), ..., 𝑔𝑘 (·))′ mapsR𝑛 toR𝑘 . Note
that this strictly generalizes the case of equality constraints discussed above, since 𝑔𝑘 (𝑥) = 0 is
equivalent to 𝑔𝑘 (𝑥) ≤ 0 and −𝑔𝑘 (𝑥) ≤ 0.

Definition 10.3.5. We call the optimization problem

max
𝑥∈𝑋

𝑓 (𝑥) subject to 𝑔(𝑥) ≤ 0

the primal problem and any 𝑥 ∈ 𝑋 such that 𝑔(𝑥) ≤ 0 a feasible solution. Denote a
solution to the primal problem, a maximizer, by 𝑥∗ and let 𝑓 ∗ = 𝑓 (𝑥∗) be the value of the
primal problem. If 𝑔𝑘 (𝑥∗) = 0, then we say that the 𝑔𝑘 constraint binds at 𝑥∗, otherwise we
say it is slack.

In principle, we could approach the above problem by first identifying any unconstrained
optima in the feasible set, and then by identifying the extrema given every possible subset of the
constraint set binding (using the optimization methods for equality constraints discussed before),
and then by comparing all the extrema we obtained to identify the best one. Fortunately, for many
problems, there are more systematic approaches, and we discuss these now.

As previously, we may define the Lagrangian.

Definition 10.3.6. Let 𝑓 , 𝑔1, ..., 𝑔𝑘 : 𝑋 → R. The Lagrangian L : 𝑋 × R𝑘+ → R is defined by

L(𝑥, 𝜆) = 𝑓 (𝑥) −
𝑚∑︁
𝑗=1

𝜆 𝑗𝑔 𝑗 (𝑥) = 𝑓 (𝑥) − 𝜆 · 𝑔(𝑥),

where 𝜆 = (𝜆1, ..., 𝜆𝑚) are the Lagrange multipliers.

The sign of the multiplier subtracted in the Lagrangian is now important. For a maximization
problem, we have nonnegative multipliers and subtract the term 𝜆 · 𝑔. Think of the term 𝜆 · 𝑔 as
a penalty in the Lagrangian. In particular, the objective is to maximize the Lagrangian, and if we
violated the constraint given 𝜆 ≥ 0 the term −𝜆𝑘𝑔𝑘 (𝑥) decreases the value of our objective. This
is bad since we are solving a maximization problem. If the value of the multiplier is high enough,
the penalty for violating the constraint will be so large that the constraint will be obeyed.

We formalize some of this intuition. First observe that for any feasible 𝑥 ∈ 𝑋 and every 𝜆 ≥ 0,
we have that

L(𝑥, 𝜆) ≥ 𝑓 (𝑥) .

Noting that the minimum of −𝜆 · 𝑔(𝑥) is either 0 or −∞ (depending on whether 𝑥 is feasible or
not), we thus have that

𝑓 ∗ = max
𝑥∈𝑋

min
𝜆≥0

L(𝑥, 𝜆) .
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This formulation is helpful because we have transformed a constrained maximization problem
(the primal problem) to an unconstrained optimization problem.

Let’s now think about what happens if we change the order of operations in this optimization
problem: that is, we minimize before maximizing.

Definition 10.3.7. For a given primal problem (𝑓 , 𝑔), define the dual function by

𝜙 (𝜆) = max
𝑥∈𝑋

L(𝑥, 𝜆) = max
𝑥∈𝑋

{𝑓 (𝑥) − 𝜆 · 𝑔(𝑥)} .

The dual problem is
min
𝜆≥0

𝜙 (𝜆),

with associated dual minimizers 𝜆∗ and dual value 𝜙∗ = min𝜆≥0 𝜙 (𝜆). If 𝜆 ≥ 0 and 𝜙 (𝜆) >
−∞, we call such 𝜆 dual feasible.

Since 𝜙 is the pointwise maximum of a family of affine functions, it is convex. If we take the
bound L(𝑥, 𝜆) ≥ 𝑓 (𝑥), fix 𝜆 and maximize over the 𝑥 on the left-hand side, we obtain

𝑓 (𝑥) ≤ max
𝑥 ′∈𝑋

L(𝑥 ′, 𝜆) = 𝜙 (𝜆),

which after maximizing over the 𝑥 on the left-hand-side obtains

𝑓 ∗ ≤ 𝜙 (𝜆).

Finally, minimizing over the 𝜆 on the right-hand-side, we obtain

𝑓 ∗ ≤ 𝜙∗.

This is an important theorem.

Theorem 10.3.8 (Weak Lagrangian duality). Given any primal problem (𝑓 , 𝑔), the primal and
dual values satisfy

𝑓 ∗ ≤ 𝜙∗.

When 𝑓 ∗ = 𝜙∗, then theremust exist (𝑥∗, 𝜆∗) such thatL(𝑥∗, 𝜆∗) = 𝑓 ∗ = 𝜙∗. This is convenient,
due to the following theorem.

Theorem 10.3.9 (Lagrangian saddlepoints are constrained maxima). Suppose that (𝑥∗, 𝜆∗) is
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a saddlepoint of the Lagrangian L(𝑥, 𝜆) = 𝑓 + 𝜆 · 𝑔, that is,

L (𝑥, 𝜆∗) ≤
(𝑎)

L (𝑥∗, 𝜆∗) ≤
(𝑏 )

L (𝑥∗, 𝜆) 𝑥 ∈ 𝑋, 𝜆 ≧ 0

Then 𝑥∗ maximizes 𝑓 over 𝑋 subject to the constraints 𝑔 𝑗 (𝑥) ⩾ 0, 𝑗 = 1, . . . , 𝑘 , and furthermore

𝜆∗𝑗𝑔 𝑗 (𝑥∗) = 0 𝑗 = 1, . . . , 𝑘 .

These last equalities are called the complementary slackness conditions.

Proof. Inequality (b) implies 𝜆∗ · 𝑔 (𝑥∗) ⩽ 𝜆 · 𝑔 (𝑥∗) for all 𝜆 ≥ 0. Therefore 𝑔 (𝑥∗) ≥ 0 , so 𝑥∗

satisfies the constraints. Setting 𝜆 = 0, we see that 𝜆∗ · 𝑔 (𝑥∗) ≤ 0. This combined with 𝜆 ≧ 0 and
𝑔 (𝑥∗) ≥ 0 implies 𝜆∗ · 𝑔 (𝑥∗) = 0 and moreover that 𝜆∗𝑗𝑔 𝑗 (𝑥∗) = 0 for 𝑗 = 1, . . . ,𝑚.

Inequality (𝑎) implies 𝑓 (𝑥)+𝜆∗ ·𝑔(𝑥) ⩽ 𝑓 (𝑥∗) for all 𝑥 . Therefore, if 𝑥 satisfies the constraints,
𝑔(𝑥) ≧ 0, we have 𝑓 (𝑥) ⩽ 𝑓 (𝑥∗), so 𝑥∗ is a constrained maximizer. ■

Much of convex optimization theory thus looks for conditions under whichwemay be assured
that 𝑓 ∗ = 𝜙∗, which is called strong duality.

Definition 10.3.10. Let 𝑓 ∗ be the primal value and 𝜙∗ the dual value. Then 𝜙∗ − 𝑓 ∗ is called
the duality gap. If the duality gap is zero, we say that the primal-dual pair satisfies strong
duality.

The simplest strong duality condition applies when the optimization problem is convex, as in
the following definition.

Definition 10.3.11 (Convex program). The primal problem

max
𝑥∈𝑋

𝑓 (𝑥) subject to 𝑔(𝑥) ≤ 0

is convex if 𝑋 is a convex set, 𝑓 is a concave function, and each 𝑔1, ..., 𝑔𝑘 is a convex function
of 𝑥 .

It might seem strange to require 𝑓 to be concave in the definition of a convex program, but
this is because of a tradition in optimization theory in which minimization problems are studied
rather than maximization problems (this is mostly opposite to the convention in economics).

When the optimization problem is convex, strong duality almost always applies. There are
many conditions under which strong duality holds for convex problems, which are called
constraint qualifications. We list two important ones below.
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Definition 10.3.12. (a) Linear independence constraint qualification (LICQ): Let 𝑥 be
feasible in the primal problem and let 𝐵(𝑥) denote the set of binding constraints at 𝑥 .
Suppose that each 𝑔𝑘 for 𝑘 ∈ 𝐵(𝑥) is differentiable at 𝑥 . Then the LICQ holds at 𝑥 if the
vectors in the set {∇𝑔𝑘 (𝑥) : 𝑘 ∈ 𝐵(𝑥)} are linearly independent.

(b) Slater’s condition: If there exists some feasible 𝑥 ′ ∈ 𝑋 such that all inequality
constraints are strictly satisfied (and equality constraints are also exactly satisfied), then
Slater’s condition holds. That is 𝑥 ′ is in the (relative) interior of the set of feasible points.

We have the following theorem for convex programs.

Theorem 10.3.13 (Convex strong duality). Strong duality holds for a convex program if either
Slater’s condition holds or if the LICQ holds at the primal maximizer 𝑥∗.

This implies that for 𝑥∗ to be a maximizer of the convex program, it is necessary and sufficient that

0 ∈ 𝜕𝑓 (𝑥∗) −
𝐾∑︁
𝑘=1

𝜆∗
𝑘
𝜕𝑔𝑘 (𝑥∗) .

When the primal problem is not convex, slightly more assumptions are required to obtain
first-order conditions for optimality.

Theorem 10.3.14 (Karush-Kuhn-Tucker (KKT)). Suppose that the following conditions holds:

(a) 𝑓 (·), 𝑔1(·), ..., 𝑔𝐾 (·) are continuously differentiable in x;

(b) 𝐷 (𝜃 ) is nonempty;

(c) 𝑥∗ is a solution to the optimization problem;

(d) constraint qualification holds at 𝑥∗.

Then

1. The first-order condition: There exist non-negative numbers 𝜆1, ..., 𝜆𝐾 such that

∇𝑓 (𝑥∗) =
𝐾∑︁
𝑘=1

𝜆𝑘∇𝑔𝑘 (𝑥∗)

2. Complementary slackness condition: For 𝑘 = 1, ..., 𝐾 ,
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𝜆𝑘𝑔𝑘 (𝑥∗) = 0

Example. Consider the following problem:

max
0≤𝑥≤5

𝑥3 − 5𝑥2 + 𝑥

Observe that we have two constraints, 𝑥 ≤ 5 and 𝑥 ≥ 0. Let 𝜆 be the multiplier for the 𝑥 ≤ 5
constraint and 𝜇 be the multiplier for the 𝑥 ≥ 0 constraint. The Lagrangian is

L = 𝑥3 − 5𝑥2 + 𝑥 + 𝜆(5 − 𝑥) + 𝜇𝑥

The first order condition gives

3𝑥2 − 10𝑥 + 1 − 𝜆 + 𝜇 = 0

and the complementary slackness conditions are

𝜆(5 − 𝑥) = 0, 𝜇𝑥 = 0

One way to solve this problem is by brute force. There are three possible cases to consider:

1. 𝑥 ≤ 5 binds, and hence 𝑥 ≥ 0 cannot bind. In that case 𝑥 = 5, 𝜇 = 0, and 𝜆 = 26.

2. 𝑥 ≥ 0 binds, and hence 𝑥 ≤ 5 does not bind. In that case 𝑥 = 0, 𝜇 = −1, 𝜆 = 0.

3. neither 𝑥 ≤ 5 nor 𝑥 ≥ 0 bind. In that case 𝜇 = 𝜆 = 0, 𝑥 = 0.103 or 𝑥 = 3.23.

We can immediately rule case (2) since 𝜇 = −1, and Kuhn-Tucker requires that 𝜇 ≥ 0. Now we
proceed by checking whether case (1) or case (3) (or both) maximize the utility. Doing so, we find
that 𝑥∗ = 5. (Draw the function.) So the Kuhn-Tucker algorithm found local maxima and minima,
and also forced us to check the endpoints. ♣

Observe that in the steps outlined above in the Kuhn-Tucker algorithm for finding
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candidates to the solution of the problem, some candidates might fail to be solutions to the
problem. This is clear from the example above (where the candidates were 𝑥 = 0.103, 3.23, 5, but
𝑥∗ = 5 only). In particular, there might be solutions (x, 𝜆) to the Kuhn-Tucker conditions that are
not solutions to the optimization problem. The Kuhn-Tucker theorem establishes conditions
under which the Kuhn-Tucker conditions are necessary conditions for an optimum. But they
might not be sufficient. To make sure that a particular candidate found by applying the
Kuhn-Tucker theorem is a maximizer of the problem, we need to check that the second-order
conditions hold at that point. In particular, one needs to calculate the Hessian matrix of second
derivatives and test for negative semi-definiteness. This is usually a pain to do (unless 𝑛 = 1), so
we will avoid going into details (see Mas-Colell, Whinston and Green (1995) if this excites you).
The following theorem provides conditions under which the Kuhn-Tucker conditions are both
necessary and sufficient (and these conditions will be satisfied in most problems in which you
are expected to apply the Kuhn-Tucker theorem).

Theorem 10.3.15. Suppose that the conditions of the Kuhn-Tucker Theorem are satisfied and
that

(a) 𝑓 (·) is quasiconcave in 𝑥 ; and

(b) 𝑔1(·), ..., 𝑔𝐾 (·) are quasiconvex.

Then any point 𝑥∗ that satifies the Kuhn-Tucker conditions is a solution to the constraint
optimization problem.

Observe that 𝑔𝑘 (·) is quasiconvex if and only if the set {x : 𝑔𝑘 (x) ≤ 0} is convex. Since a finite
intersection of convex sets is convex, the assumption in (b) ensures that the constraint set is
convex.

Proof. The proof considers only the case for which 𝑓 is concave.
A continuously differentiable function 𝑔 : R𝑛 → R is quasiconvex if and only if

𝐷𝑔(x) · (x′ − x) ≤ 0 whenever 𝑔(x′) ≤ 𝑔(x)

Suppose that 𝑥∗ satisfies the Kuhn-Tucker conditions. Then there are multipliers 𝜆1, ..., 𝜆𝐾 such
that
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∇𝑓 (𝑥∗) =
𝐾∑︁
𝑘=1

𝜆𝑘∇𝑔𝑘 (𝑥∗)

But then, since for any feasible x we have that 𝑔𝑘 (x) ≤ 𝑔𝑘 (𝑥∗) whenever 𝜆𝑘 > 0, we have that

∇𝑓 (𝑥∗) · (x − 𝑥∗) =
𝐾∑︁
𝑘=1

𝜆𝑘∇𝑔𝑘 (𝑥∗) · (x − 𝑥∗) ≤ 0

Note that for concave 𝑓 we know that

𝑓 (x) ≤ 𝑓 (𝑥∗) + ∇𝑓 (𝑥∗) · (𝑥 − 𝑥∗)

Since ∇𝑓 (𝑥∗) · (𝑥 − 𝑥∗) ≤ 0, we conclude that 𝑓 (x) ≤ 𝑓 (𝑥∗), and thus 𝑥∗ is a solution to the
problem. ■

Example. (Non-negativity constraints) Consider a consumer who is maximizing her utility 𝑢 (𝑥)
by choosing a bundle 𝑥 ∈ R𝑛 such that her total expenditure does not exceed her wealth and she
cannot consume negative amounts of any good. Her problem is

max
𝑥∈R𝑛

𝑢 (𝑥)

subject to 𝑝1𝑥1 + ... + 𝑝𝑛𝑥𝑛 ≤ 𝑤 (budget constraint)

𝑥𝑖 ≥ 0, 𝑖 = 1, ..., 𝑁 (non-negativity constraints)

where 𝑝𝑖 is the price of good 𝑖 , and 𝑤 is consumer’s wealth. Let 𝜆 be the Lagrange multiplier
on the budget constraint (which we will assume it binding, which will usually be the case given
some natural assumptions on the properties of the utility function) and 𝜇𝑖 be the multiplier on
the non-negativity constraint for good 𝑖 (which may or may not bind). The Lagrangian for the
problem is

L(𝑥, 𝜆, 𝜇) = 𝑢 (𝑥) + 𝜆 (𝑤 − 𝑝1𝑥1 − ... − 𝑝𝑛𝑥𝑛) +
𝑛∑︁
𝑖=1

𝜇𝑖𝑥𝑖

The first-order conditions become
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𝜕𝑢

𝜕𝑥𝑖
= 𝜆𝑝𝑖 − 𝜇𝑖 𝑖 = 1, ..., 𝑛

which is equivalent to

𝜕𝑢

𝜕𝑥𝑖
≤ 𝜆𝑝𝑖 with equality if 𝑥𝑖 > 0

for 𝑖 = 1..., 𝑛. The complementary slackness conditions are 𝜇𝑖𝑥𝑖 = 0, 𝑖 = 1, ..., 𝑛.
When we have an interior solution (i.e. 𝑥∗ >> 0), then ∇𝑢 (𝑥∗) = 𝜆𝑝 (in the vector notation),

meaning that the price vector and the vector of marginal utilities are parallel. Since the price
vector is perpendicular to the budget line, and the vector of marginal utilities is perpendicular to
the utility level curves, this gives us the indifference curve equals the slope of the budget line. ♣

Mixture of equality and inequality constraints

When the primal program includes equality constraints, the Lagrangian duality approach
discussed above continues to work, but additional care needs to be taken. In particular, since
there are nonnegative multipliers associated with both 𝑔𝑖 (𝑥) ≤ 0 and −𝑔𝑖 (𝑥) ≤ 0 for some 𝑔𝑖 , the
dual variables associated with these constraints, say 𝜆𝑖 and 𝜆′𝑖 can be combined into a single dual
variable 𝜈𝑖 = 𝜆𝑖 − 𝜆′𝑖 . That is why you will often see separate theorems stated for optimization
programs with equality constraints. These separate theorems are strictly unnecessary, but we
will note the general principle for them below.

Theorem 10.3.16. Consider the primal problem

max
𝑥∈𝑋

𝑓 (𝑥) subject to 𝑔(𝑥) ≤ 0 and ℎ(𝑥) = 0.

The Lagrangian for this problem may now be written

L(𝑥, 𝜆, 𝜈) = 𝑓 (𝑥) − 𝜆 · 𝑔(𝑥) − 𝜈 · ℎ(𝑥),

where each 𝜆𝑖 ≥ 0 and 𝜈𝑖 ∈ R.
The convex strong duality and KKT theorems also hold with this modified definition of the

Lagrangian.

One note of caution: for a convex program, any equality constraints must be affine functions,
since this requires ℎ(𝑥) and −ℎ(𝑥) to be concave, which holds exactly when ℎ is affine.
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10.3.1 Deleting constraints

Sometimes we know which contraints in an optimization problem bind, and which do not. Or
sometimes due to a lot of constraints, we might have a good guess. One might try to conclude
that the constraints that do not bind can be ignored without changing the optimal solution. If this
were true, it would simplify the problem in many occasions, as we could ignore some constraints
that we believe do not bind, and solve the simplified problem and confirm the conjecture that the
ignored constraints do not bind. Unfortunately, this cannot always be done. Ignoring constraints
that do not bind does change the solution sometimes. For instance, if in Example 25 we change
the constraint from 0 ≤ 𝑥 ≤ 5 to 0 ≤ 𝑥 ≤ 3, the new maximum will be attained at 𝑥 = 0.103. Even
though the constraint 𝑥 ≤ 3 does not bind, ignoring it implies that the maximumwill change. The
following theorem identifies conditions under which ignoring the constrains that do not bind is
valid:

Theorem 10.3.17. Consider the maximization problem

max
𝑥∈R𝑛

𝑓 (𝑥) subject to 𝑔𝑘 (𝑥) ≤ 0 for all 𝑘 = 1, ..., 𝐾

Suppose that the conditions of the Kuhn-Tucker Theorem hold and that

(a) 𝑓 (·, 𝜃 ) is strictly quasiconcave;

(b) 𝑔1(·), ..., 𝑔𝐾 (·) are quasiconvex;

(c) 𝑔1(·), ..., 𝑔𝐵 (·) are binding constraints at the solution;

(d) 𝑔𝐵+1(·), ..., 𝑔𝐾 (·) are slack constraints at the solution.

Then 𝑥∗ is a solution if and only if it is a solution to the modified problem

max
𝑥∈R𝑛

𝑓 (𝑥) subject to 𝑔𝑘 (𝑥) = 0 for all 𝑘 = 1, ..., 𝐵

Proof. (More like a sketch of the proof.) Conditions (a) and (b) insure the uniqueness of the
solution to the main maximization problem. Call it 𝑥∗. Suppose, aiming for a contradiction, that
there is a point 𝑥 that satisfies the constraints of the second problem, for which 𝑓 (𝑥) > 𝑓 (𝑥∗).
Then because 𝑓 (·) is strictly quasiconcave, 𝑓 (𝑥 ′) > 𝑓 (𝑥∗) for all 𝑥 ′ = 𝑎𝑥 + (1 − 𝑎)𝑥∗, 𝑎 ∈ (0, 1).
Furthermore, by strict quasiconvexity of the constraints and continuity of 𝑔𝑖s, 𝑥 ′ satisfies all of
the constraints of the first problem for 𝑎 close enough to 0. But then 𝑥∗ cannot be a solution to
the main problem, a contradiction. ■
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10.4 Comparative statics

We now return the parameter 𝜃 as a subject of study. In economics, we are often interested
in questions of how changes in exogenous variables affect endogenous outcomes. Comparative
statics is a term for these kinds of questions:

1. How does the optimal choices 𝑥∗(𝜃 ) depend on 𝜃?

2. How does the maximized value of the objective, 𝑉 (𝜃 ) = 𝑓 (𝑥∗(𝜃 ), 𝜃 ) depend on 𝜃?

These questions might seem straightforward, as an obvious thing to do would be, given a
particular problem, to find 𝑥∗(𝜃 ) and 𝑉 (𝜃 ) and then simply check how each of the two functions
varies with 𝜃 (by for instance, taking derivatives with respect to 𝜃 , if the two functions are
differentiable in 𝜃 )? However, it is often difficult, or not even possible to obtain explicit solution
for 𝑥∗(·), and/or 𝑉 (·). We will discuss two tools for the first question: the Implicit Function
Theorem and the Topkis’ Theorem. We will use the Envelope Theorem for the second question.

10.4.1 Implicit function theorem

Recall that the Implicit Function Theorem (Theorem 7.3.1) gives us sufficient conditions under
which an implicitly defined equation as a local solution and a formula for calculating local
derivatives. This is used in comparative statics by applying the implicit function theorem to the
first-order conditions of the optimization problem.

The idea is as follows. For simplicity, consider an unconstrained optimization problem
max𝑥∈R 𝑓 (𝑥, 𝜃 ), and suppose that we know that the first order conditions are necessary and
sufficient (e.g., because 𝑓 (𝑥, 𝜃 ) is bounded and concave in 𝑥 for any fixed 𝜃 ). The first order
conditions are

𝑓𝑥 (𝑥, 𝜃 ) = 0.

The implicit function theorem gives us the expression

𝜕𝑥∗(𝜃 )
𝜕𝜃

= − 𝑓𝑥𝜃 (𝑥
∗(𝜃 ), 𝜃 )

𝑓𝑥𝑥 (𝑥∗(𝜃 ), 𝜃 )
,

under the assumption that 𝑓𝑥𝑥 (𝑥∗(𝜃 ), 𝜃 ) ≠ 0.
Alternatively, we can arrive at this expression directly by differentiate both sides of the first-

order conditions with respect to 𝜃 , to obtain
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𝑓𝑥𝑥 (𝑥∗(𝜃 ), 𝜃 )
𝜕𝑥∗(𝜃 )
𝜕𝜃

+ 𝑓𝑥𝜃 (𝑥∗(𝜃 ), 𝜃 ) = 0,

which can be re-organized to give the above expression.
We will now consider a few example applications of this approach.

Example. Consider ℎ(𝑥 (𝜃 ), 𝜃 ) = ln(𝑥 (𝜃 )) + 𝜃 2. Applying the theorem, we have that 𝑥 ′(𝜃 ) =

−2𝑥 (𝜃 )𝜃 . In this case it turns out we could’ve firstly solved for 𝑥 (𝜃 ) explicitly and then taken the
derivative. Obviously, we would’ve ended up with the same thing. ♣

Now consider the multi-dimensional case: x ∈ R𝑛 , 𝜃 ∈ R𝑚 :

𝐷𝑥 𝑓 (x∗(𝜃 ), 𝜃 ) = 0

The implicit function theorem then implies that

𝐷𝜃x∗(𝜃 ) = − [𝐷𝑥𝑥 𝑓 (x∗(𝜃 ), 𝜃 )]−1
𝐷𝑥𝜃ℎ(x∗(𝜃 ), 𝜃 ),

under the assumption that the solution 𝑥 (𝜃 ) is locally unique, all the relevant derivatives exist at
the optimum, and 𝐷𝑥ℎ(x∗(𝜃 ), 𝜃 ) has full rank.

Example. Consider the following problem:

max
0≤𝑥≤2

(𝑥 − 𝜃 )3 − 𝑥2

Answer:
The Lagrangian is

L = (𝑥 − 𝜃 )3 − 𝑥2 + 𝜆(2 − 𝑥) + 𝜇𝑥

The first order conditions gives



10.4 Comparative statics 169

3(𝑥 − 𝜃 )2 − 2𝑥 − 𝜆 + 𝜇 = 0

If one of the constraints binds, then the solution does not change locally. So, we only consider
solutions in the interior, where 𝜆 = 𝜇 = 0. Thus, we have that

ℎ(𝑥 (𝜃 ), 𝜃 ) = 3(𝑥 (𝜃 ) − 𝜃 )2 − 2𝑥 (𝜃 ) = 0

Applying the theorem, we have that

𝜕𝑥 (𝜃 )
𝜕𝜃

=
3𝑥 (𝜃 ) − 3𝜃

3𝑥 (𝜃 ) − 3𝜃 − 1

So, what can we say about 𝜕𝑥 (𝜃 )
𝜕𝜃

? Often, we are only interested in the sign of the derivative,
since for the magnitude we need numbers for specific parameters. In addition, we can try to say
some general things about the sign of the derivative. In this example, we can see that 𝜕𝑥 (𝜃 )

𝜕𝜃
> 0

whenever 𝑥 (𝜃 ) > 1
3 +𝜃 or 𝑥 (𝜃 ) < 𝜃 . Since we also know that 𝑥 is bounded above by 2, we can say

for certain that if 𝜃 > 2, then 𝜕𝑥 (𝜃 )
𝜕𝜃

> 0 ♣

Exercise 10.3. Consider a Cournot model, in which two firms compete for profits by choosing a
quantity of a product to produce. The firms face an inverse demand curve where the price 𝑃 (𝑄)
is determined by the total quantity produced by both firms, 𝑄 = 𝑞1 + 𝑞2. Assume that 𝑃 (𝑄) is
decreasing and concave. In addition, each firm has a marginal cost function 𝑐 (𝑞𝑖) that is convex.

Consider firm 1’s “best response function”: the optimal 𝑞∗1 as a function of 𝑞2. Show that
𝑞∗1 (𝑞2) is decreasing in 𝑞2.

Exercise 10.4. Suppose 𝑓 (z) is a concave production function with 𝐿 − 1 inputs (𝑧1, ..., 𝑧𝐿−1).
Suppose also that 𝜕𝑓 (z)

𝜕𝑧𝑙
≥ 0 for all 𝑙 and 𝑧 ≥ 0 and that the matrix 𝐷2 𝑓 (z) is negative definite at

all z. Use the firm’s first-order conditions and the implicit function theorem to prove the following
statements:

(a) An increase in the output price always increases the profit-maximizing level of output.

(b) An increase in the output price increases the demand for some input.
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(c) An increase in the price of an input leads to a reduction in the demand for the input.

This implicit function approach may also be used for constrained optimization problems for
which the KKT conditions are known to be necessary and sufficient (for example, for convex
programs with differentiable objective and constraint functions). In this case, since the Lagrange
multipliers are also a function of𝜃 , onemust be careful towrite down the full set of KKT conditions
and to carefully calculate the relevant derivatives.

10.4.2 Topkis’ theorem

Topkis’ Theorem, like the Implicit Function Theorem is used to answer how the optimal solution(s)
vary with the parameter. However, it allows us to answer the question under much more general
assumption. You will study Topkis’s Theorem carefully in the first-year micro sequence, so I will
give only a very brief introduction to the topic.

The main barrier to the implicit function theorem approach is that the first-order conditions
may be hard to write down or there may be many solutions to the first-order conditions which
may or may not be the solutions of interest. The Topkis theorem approach does not even require
you to write the first-order conditions down!

Instead, the crucial assumption is that 𝑥 and 𝜃 are complementary in the objective function
𝑓 (𝑥, 𝜃 ). When 𝑓 is smooth, this is equivalent to 𝑓𝑥𝜃 ≥ 0. Since we know 𝑓𝑥𝑥 ≤ 0 at a maximum,
the implicit function theorem would then imply that 𝑥 ′(𝜃 ) ≥ 0. We now introduce a condition
similar to 𝑓𝑥𝜃 ≥ 0 that does not require differentiability.

Definition 10.4.1. The function 𝑓 : 𝑋 ×Θ → R with 𝑋,Θ ⊆ R has increasing differences
if for all 𝑥, 𝑥 ′ ∈ 𝑋 with 𝑥 ′ ≥ 𝑥 and 𝜃, 𝜃 ′ ∈ Θ with 𝜃 ′ ≥ 𝜃 ,

𝑓 (𝑥 ′, 𝜃 ′) − 𝑓 (𝑥, 𝜃 ′) ≥ 𝑓 (𝑥 ′, 𝜃 ) − 𝑓 (𝑥, 𝜃 ) .

It has strict increasing differences if for all 𝑥, 𝑥 ′ ∈ 𝑋 with 𝑥 ′ > 𝑥 and 𝜃, 𝜃 ′ ∈ Θwith 𝜃 ′ ≥ 𝜃 ,
we have

𝑓 (𝑥 ′, 𝜃 ′) − 𝑓 (𝑥, 𝜃 ′) > 𝑓 (𝑥 ′, 𝜃 ) − 𝑓 (𝑥, 𝜃 ) .

The interpretation here is that the incremental benefit of increasing 𝑥 , that is 𝑓 (𝑥 ′, 𝜃 ) − 𝑓 (𝑥, 𝜃 ),
increases when you increase 𝜃 . Note that the definition may be symmetrically rewritten to switch
the roles of 𝑥 and 𝜃 .

Theorem 10.4.2. Under the assumptions that the derivatives below are well-defined, 𝑓 has
increasing differences if and only if:

(a) 𝑓𝑥 (𝑥, 𝜃 ) is nondecreasing in 𝜃 for all 𝑥 ,
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(b) 𝑓𝜃 (𝑥, 𝜃 ) is nondecreasing in 𝑥 for all 𝜃 , or

(c) 𝑓𝑥𝜃 ≥ 0.

If 𝑓 is twice-differentiable and 𝑓𝑥𝜃 > 0, then 𝑓 has strictly increasing differences (although this
condition is not necessary).

We have the following famous results.

Theorem 10.4.3 (Univariate Topkis Theorem). Suppose that the objective function 𝑓 : 𝑋 ×
Θ → R with 𝑋,Θ ⊆ R has increasing differences. Let 𝜃 ′ > 𝜃 with 𝑥 ∈ 𝑥∗(𝜃 ) and 𝑥 ′ ∈ 𝑥∗(𝜃 ′).
Then either:

• 𝑥 ′ ≥ 𝑥 , or

• 𝑥 ′ ∈ 𝑥∗(𝜃 ) and 𝑥 ∈ 𝑥∗(𝜃 ′).

Theorem 10.4.4 (Monotone Selection Theorem). Suppose that the objective function 𝑓 : 𝑋 ×
Θ → R with 𝑋,Θ ⊆ R has strict increasing differences. Then for all 𝜃 ′ > 𝜃 , 𝑥 ∈ 𝑥∗(𝜃 ),
𝑥 ′ ∈ 𝑥∗(𝜃 ′), we have 𝑥 ′ ≥ 𝑥 . That is, any selection from 𝑥 (𝜃 ) is nondecreasing.

In ECON 202, youwill learn various versions of the Topkis theorem that apply for multivariate
optimization problems, as well as some necessary conditions for 𝑥 (𝜃 ) to be nondecreasing. I don’t
want to spoil Ilya’s fun, so let’s move on.

Exercise 10.5. An agent is participating in a first-price auction with 𝑛 other bidders. Her value
for the object is 𝑣 . Show that the agent’s optimal bid is a nondecreasing function of her value.

Exercise 10.6. A firm is developing a new product and is evaluating how long to wait before
launching it. A longer development time allows the firm to improve its production technology,
which results in cost savings and better product quality. On the other hand, the firm knows that
a direct competitor is working on a similar product, and it realizes that whoever introduces the
product first will capture a significant share of the market. Specifically, if the competitor enters
first, then our firm will be left with profits 𝜔 , while if it introduces its product at time 𝑡 and the
competitor hasn’t yet entered, it will enjoy a profit 𝜋 (𝑡) > 𝜔 , with 𝜋 ′(𝑡) > 0. The firm believes
that the competitor’s time of entry is distributed exponentially with parameter 𝜆, that is the
probability that the firm enters at or before time 𝑡 is 1− 𝑒−𝜆𝑡 . Formulate the firm’s optimization
problem, and evaluate the influence of 𝜆 on the firm’s optimal waiting time.
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10.4.3 Envelope theorem

The Envelope Theorem is a tool used to compute the derivative of the value function with respect
to the parameters. We will introduce three versions of the envelope theorem: one the ‘classical’
differentiable envelope theorem for unconstrained optimization problems, the second is a
significant generalization of the theorem with fewer assumptions, and the third is an application
of the first theorem to constrained maximization problems.

Here we may allow 𝑋 to be an abstract choice set (it need not be a subset of Euclidean space).

Theorem 10.4.5 (Envelope Theorem - Differentiable Form). Suppose that for some 𝜃 , 𝑉 ′(𝜃 )
exists and 𝑥∗(𝜃 ) is non-empty with 𝑥∗ ∈ 𝑥∗(𝜃 ). Then 𝑉 ′(𝜃 ) = 𝑓𝜃 (𝑥∗, 𝜃 ).

Proof. By definition of the optimization problem,

𝑉 (𝜃 + 𝜀) ≥ 𝑓 (𝑥∗, 𝜃 + 𝜀),

and 𝑉 (𝜃 ) = 𝑓 (𝑥∗, 𝜃 ) so that

𝑉 (𝜃 + 𝜀) −𝑉 (𝜃 ) ≥ 𝑓 (𝑥∗, 𝜃 + 𝜀) − 𝑓 (𝑥∗, 𝜃 ).

Hence,

𝑉 ′(𝜃 ) = lim
𝜀↓0

𝑉 (𝜃 + 𝜀) −𝑉 (𝜃 )
𝜀

≥ lim
𝜀↓0

𝑓 (𝑥∗, 𝜃 + 𝜀) − 𝑓 (𝑥∗, 𝜃 )
𝜀

= 𝑓𝜃 (𝑥∗, 𝜃 ).

Similarly letting 𝜀 ↑ 0 establishes 𝑉 ′(𝜃 ) ≤ 𝑓𝜃 (𝑥∗, 𝜃 ). ■

The problem with this approach is that it assumes that 𝑉 ′(𝜃 ) exists, which typically requires
calculating 𝑉 (𝜃 ) or applying some careful analysis. A very nice generalization due to Milgrom
and Segal (2002) applies with many fewer assumptions.

Theorem 10.4.6 (Envelope Theorem - Integral Form). Let Θ = R and suppose that for
almost all 𝜃 , 𝑥∗(𝑡) is nonempty and let 𝜒∗(𝑡) be a selection from this correspondence. Suppose
moreover that 𝑓𝜃 (𝑥, 𝜃 ) exists for all 𝑥, 𝜃 and that there exists some function 𝑏 : Θ → R+ such
that |𝑓𝜃 (𝑥, 𝜃 ) | ≤ 𝑏 (𝜃 ) for all 𝜃 and

∫ 𝜃
0 𝑏 (𝑡)𝑑𝑡 < ∞.
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Then 𝑉 (𝜃 ) is differentiable almost everywhere, and

𝑉 (𝜃 ) = 𝑉 (0) +
∫ 𝜃

0
𝑓𝜃 (𝜒∗(𝑡), 𝑡)𝑑𝑡 .

Finally, we consider an application of the first envelope theorem to constrained optimization
programs. In particular, consider any programs for which strong duality holds and the KKT
conditions are known to be necessary and sufficient for 𝑥∗(𝜃 ) to be an optimal solution to the
original problem (e.g., convex differentiable programs). Moreover, suppose that 𝑥∗(𝜃 ) is
differentiable in an open neighborhood of 𝜃0, a parameter value of interest. This implies that 𝑉
is differentiable in a neighborhood of 𝜃0.

Recall that we may re-express the constrained optimization problem as

𝑉 (𝜃 ) = min
𝜆≥0

𝜙 (𝜆, 𝜃 ),

where 𝜙 is the dual function (which now depends on 𝜃 ),

𝜙 (𝜆, 𝜃 ) = max
𝑥∈𝑋

L(𝑥, 𝜆, 𝜃 ) .

We can apply the differentiable envelope theorem to the dual formulation of 𝑉 (𝜃 ) to obtain

𝑉 ′(𝜃 ) = 𝜙𝜃 (𝜆∗(𝜃 ), 𝜃 ) .

We can also apply the differentiable envelope theorem to the definition of 𝜙 to obtain

𝜙𝜃 (𝜆∗(𝜃 ), 𝜃 ) = L𝜃 (𝑥∗(𝜃 ), 𝜆∗(𝜃 ), 𝜃 ) .

Theorem 10.4.7 (Envelope Theorem for Lagrangians). Consider the primal problem with
continuously differentiable objective and constraint functions, and suppose that 𝑥∗(𝜃 ) is
differentiable in an open neighborhood of 𝜃0.

Then 𝑉 (·) is differentiable in an open neighborhood of 𝜃0 and

𝑉𝜃𝑖 (𝜃0) = L𝜃𝑖 (𝑥∗(𝜃0), 𝜆∗(𝜃0), 𝜃0) = 𝑓𝜃𝑖 (𝑥∗(𝜃0), 𝜃0) − 𝜆∗(𝜃0) · 𝑔𝜃𝑖 (𝑥∗(𝜃0), 𝜃0),

where 𝜆∗1 (𝜃0), ..., 𝜆∗𝐾 (𝜃0) are the Lagrange multipliers associated with 𝑥∗(𝜃0).
That is, the derivative of the value function is equal to the derivative of the Lagrangian.

For constraint 𝑘 that does not bind, 𝜆𝑘 = 0 so we can change anything that 𝜆𝑘 is multiplying
without altering any equations. That justifies the above analysis. However, it needs to be the case
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that the set of binding constraints does not change with the parameters in an open neighborhood
around the parameter of interest. This is ensured in the theorem by the assumption that 𝑥∗(𝜃 ) is
differentiable in an open neighborhood around 𝜃 .

One might wonder why is the theorem called the envelope theorem. To answer, consider a
graphical example in a one dimensional case, 𝑥 ∈ 𝐵 ⊆ R, 𝜃 ∈ 𝐴 ⊆ R, where 𝐴 and 𝐵 are open
set. For every possible 𝑥 ∈ 𝐵 draw the objective function in the 𝜃 -space. The "envelope" of these
curves is the value function, 𝑉 . So, the envelope theorem tells us about the derivative of the
envelope function.

Example. Consider the same example as example 1 in the implicit function theorem section.
Recall the problem:

𝑉 (𝜃 ) = max
0≤𝑥≤2

(𝑥 − 𝜃 )3 − 𝑥2

Answer:
The Lagrangian is

L(𝑥, 𝜆, 𝜇, 𝜃 ) = (𝑥 − 𝜃 )3 − 𝑥2 + 𝜆(2 − 𝑥) + 𝜇𝑥

The derivative, evaluated at the optimum is:

𝜕𝑉 (𝜃 )
𝜕𝜃

=
𝜕L(𝑥∗(𝜃 ), 𝜆, 𝜇, 𝜃 )

𝜕𝜃
= −3(𝑥∗(𝜃 ) − 𝜃 )2

So, the value function is non-increasing (and in general decreasing) in 𝜃 . ♣

Example. The envelope theorem is used a lot in economics. It is often useful not only when
we are interested in the value function, but even to characterize or find explicit solutions for the
optimal choices 𝑥∗(𝜃 ). You will encounter such use of the envelope theorem in the first year
(mostly in the micro sequence), under names such as Hotelling’s Lemma, Shepherd’s Lemma,
Roy’s Identity, etc. If you can spot a simple application of the envelope theorem when you come
across these lemmas, you will not need to memorize them separately, but be able to quickly derive
them if needed. Let’s derive Roy’s identity here. Roy’s identity is used in consumer theory to get
a (Marshallian) demand function from a consumer’s indirect utility (which is the value function
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of the consumer problem). The consumer faces a problem of choosing a bundle 𝑥 ∈ R𝑛 given the
price vector 𝑝 and wealth𝑤 :

𝑉 (𝑝,𝑤) = max
𝑥∈R𝑛

𝑢 (𝑥)

subject to 𝑥𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑛

𝑝 · 𝑥 ≤ 𝑤

Let’s assume that the solution is in the interior (so that we can ignore nonnegativity constraints),
so the Lagrangian is

L(𝑥, 𝜆, 𝑝,𝑤) = 𝑢 (𝑥) + 𝜆(𝑤 − 𝑝 · 𝑥)

Now by the envelope theorem

𝜕𝑉 (𝑝,𝑤)
𝜕𝑝𝑖

=
𝜕L(𝑥, 𝜆, 𝑝,𝑤)

𝜕𝑝𝑖
= −𝜆𝑥∗(𝑝,𝑤)

𝜕𝑉 (𝑝,𝑤)
𝜕𝑤

=
𝜕L(𝑥, 𝜆, 𝑝,𝑤)

𝜕𝑤
= 𝜆

Therefore

𝑥∗(𝑝,𝑤) = −
𝜕𝑉 (𝑝,𝑤 )
𝜕𝑝𝑖

𝜕𝑉 (𝑝,𝑤 )
𝜕𝑤

Hence, if we know the indirect utility function, we can derive a consumer’s demand function.
This will be a very useful link in Econ 202. ♣

Exercise 10.7. A price-taking firm produces output 𝑞 from inputs 𝑧1 and 𝑧2 according to a
differentiable concave production function 𝑓 (𝑧1, 𝑧2). The price of its output is 𝑝 > 0 and the
prices of its inputs are (𝑤1,𝑤2) >> 0. However, there are two unusual things about this firm.
First, rather than maximizing profit, the firm maximizes revenue. Second, the firm is cash
constrained. In particular, it has only 𝐶 dollars on hand before production and, as a result, its
total expenditures on inputs cannot exceed 𝐶 .
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Suppose one of your econometrician friends tells you that she has used repeated
observations of the firm’s revenues under various output prices, input prices, and levels of the
financial constraint and has determined that the firm’s revenue level 𝑅 can be expressed as the
following function of the variables (𝑝,𝑤1,𝑤2,𝐶):

𝑅(𝑝,𝑤1,𝑤2,𝐶) = 𝑝 [𝛾 + log𝐶 − 𝛼 log𝑤1 − (1 − 𝛼) log𝑤2]

What is the firm’s use of output 1, 𝑧1(𝑝,𝑤1,𝑤2,𝐶)?

Exercise 10.8. A monopolist sells products in two markets, A and B. The demand for the firm’s
products in these markets are𝑄𝐴 = 100− 0.4𝑃𝐴 + 0.1𝑃𝐵 and𝑄𝐵 = 120− 0.5𝑃𝐵 + 0.2𝑃𝐴. The firm
has a constant marginal cost of 𝑐 = 40 and a fixed cost 𝐹 = 2500. Use the envelope theorem to
approximate the change in profits caused by a change in marginal cost to 𝑐 = 41.

Exercise 10.9. In this problem, we will prove the famous “revenue equivalence theorem” in
mechanism design. An agent has a value 𝑣 for a good. The mechanism designer does not know
the agent’s value, but supposes it is drawn from an absolutely continuous distribution with cdf
𝐹 , that is Pr(𝑣 ≤ 𝑣) = 𝐹 (𝑣) with 0 ≤ 𝑣 ≤ 1. The designer commits in advance to an allocation
rule 𝑥 (𝑣), which is the probability the agent is allocated the good if they report value 𝑣 , and a
payment rule 𝑡 (𝑣), which is the amount the agent needs to pay the mechanism designer. The
agent will choose their report 𝑟 so as to maximize their utility

𝑈 (𝑣, 𝑟 ) = 𝑣𝑥 (𝑟 ) − 𝑡 (𝑟 ) .

Let 𝑈 ∗(𝑣) = max𝑟 𝑣𝑥 (𝑟 ) − 𝑡 (𝑟 ). Use the envelope theorem to express 𝑡 (𝑣) as a function of 𝑥 (𝑣).
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11.1 Continuous dynamical systems: differential equations

Many economic problems naturally lend to relationships between the values of variables and their
rates of change. Such situations are well modelled by differential equations.

Definition 11.1.1. Let 𝑥 : R → R𝑚 be a vector-valued function which is 𝑛-times
differentiable. An ordinary differential equation (ODE) is an equatiDon of the form

𝑔(𝑥 (𝑛) (𝑡), 𝑥 (𝑛−1) (𝑡), ..., ¤𝑥 (𝑡), 𝑥 (𝑡), 𝑡) = 0.

If the equation may be written

𝑥 (𝑛) (𝑡) = 𝑔(𝑥 (𝑛−1) (𝑡), 𝑥 (𝑛−2) (𝑡), ..., ¤𝑥 (𝑡), 𝑥 (𝑡), 𝑡),

the ODE is said to be explicit. The order of an ODE is the order of the highest derivative in
the equation.

An ODE is linear if it takes the form

𝑎𝑛 (𝑡) · 𝑥 (𝑛) (𝑡) + 𝑎𝑛−1(𝑡) · 𝑥 (𝑛−1) (𝑡) + ... + 𝑎1(𝑡) · ¤𝑥 (𝑡) + 𝑎(𝑡) · 𝑥 (𝑡) + 𝑏 (𝑡) = 0,
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else it is nonlinear. A linear ODE with 𝑏 (𝑡) = 0 is called homogeneous.
An ODE is autonomous if it depends on 𝑡 only through the dependence of 𝑥 and its

derivatives on 𝑡 .

In these notes we will exclusively study explicit differential equations. In the absence of this
assumption, analysis is typically much more complicated, using analytic tools similar to the
implicit function theorem.

There are typically many functions 𝑥 (𝑡) that satisfy a differential equation. Thus, a variety of
other conditions are imposed in order to obtain a unique solution.

Definition 11.1.2. A boundary value (or initial value or terminal value, depending on the
context) is a condition of the form 𝑥 (𝑡0) = 𝑥0 for some 𝑡0 ∈ R and 𝑥0 ∈ R𝑚 .

A transversality condition is an ODE with an assumption on lim𝑡→∞ 𝑥 (𝑡). Typically
transversality conditions are insufficient to fully characterize a solution, so these may be
coupled with other conditions.

We have the following important results about the existence and uniqueness of solutions to
boundary value problems.

Theorem 11.1.3. Consider the boundary value problem ¤𝑥 (𝑡) = 𝑔(𝑥 (𝑡), 𝑡) with 𝑥 (𝑡0) = 𝑥0 and
let 𝑈 be an open set in R𝑚 × R containing (𝑡0, 𝑥0).

(a) Peano’s Theorem: Suppose 𝑔 : 𝑈 → R𝑚 is continuous. Then there exists a solution to the
initial value problem.

(b) Picard-Lindelöf Theorem: If in addition 𝑔 is Lipschitz in 𝑥 on 𝑈 , then there exists an
interval (𝑎, 𝑏) containing 𝑡0 such that the solution is unique on (𝑎, 𝑏).

Although the above theorem appears to apply on to first-order explicit ODEs, in fact, it may
be applied much more generally using a reduction of higher-order explicit ODEs to a system of
first order ODEs, as follows. Suppose 𝑥 (𝑛) = 𝑔(𝑥 (𝑛−1) (𝑡), 𝑥 (𝑛−2) (𝑡), ..., ¤𝑥 (𝑡), 𝑥 (𝑡), 𝑡). Then define
𝑦𝑛 (𝑡) = 𝑥 (𝑛−1) (𝑡), with 𝑦1(𝑡) = 𝑥 (𝑡). The new system of differential equations is then ¤𝑦1(𝑡) =

𝑦2(𝑡), ¤𝑦2(𝑡) = 𝑦3(𝑡), ..., ¤𝑦𝑛−1(𝑡) = 𝑦𝑛 (𝑡) and ¤𝑦𝑛 (𝑡) = 𝑔(𝑦𝑛 (𝑡), 𝑦𝑛−1(𝑡), ..., 𝑦1(𝑡), 𝑡). Existence and
uniqueness for the higher-order equations can thus sometimes be obtained by careful application
of the Peano or Picard-Lindelöf Theorems to this system.

We will mostly study linear ODEs. The analysis of nonlinear ODEs is typically quite
challenging, relying mostly on numerical methods and localized linearization (or
log-linearization) of the ODE (that is, exploiting methods like Taylor’s Theorem). You will learn
some of these methods in the last quarter of the macroeconomics sequence.

The study of homogeneous linear ODEs will be particularly important. This is because linear
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ODEs may be written as linear transformations on 𝐶𝑛 (R,R𝑚), that is if
𝑇 : 𝐶𝑛 (R,R𝑚) → 𝐶𝑛 (R,R𝑚) is defined by

𝑥 (𝑡) ↦→ 𝑎𝑛 (𝑡) · 𝑥 (𝑛) (𝑡) + 𝑎𝑛−1(𝑡) · 𝑥 (𝑛−1) (𝑡) + ... + 𝑎1(𝑡) · ¤𝑥 (𝑡) + 𝑎(𝑡) · 𝑥 (𝑡),

then𝑇 (𝛼𝑥1+𝑥2) = 𝛼𝑇 (𝑥1)+𝑇 (𝑥2) for any constant 𝛼 ∈ R. Thus the general solution of these ODEs
are the nullspace in𝐶𝑛 (R,R𝑚) of the ODE operator. It turns out this nullspace is𝑚−dimensional,
so that there are 𝑚 basis vectors–linearly independent homogenous solutions to the equation.
Then if 𝑥𝑝 (𝑡) is a “particular” solution of the ODE

𝑎𝑛 (𝑡) · 𝑥 (𝑛) (𝑡) + 𝑎𝑛−1(𝑡) · 𝑥 (𝑛−1) (𝑡) + ... + 𝑎1(𝑡) · ¤𝑥 (𝑡) + 𝑎(𝑡) · 𝑥 (𝑡) + 𝑏 (𝑡) = 0, 𝑥 (𝑡0) = 𝑥0

then so is 𝑥𝑝 (𝑡) + 𝑥𝐻 (𝑡) where 𝑥𝐻 (𝑡) is any element in the nullspace of the operator (that is, any
solution to the homogeneous equation.

Exercise 11.1. Let 𝑎 : R→ R be a continuous function. Show that the ODE

¤𝑥 (𝑡) =
√︁
𝑎(𝑡)2 + 𝑥 (𝑡)2, 𝑥 (0) = 𝑥0

has a unique solution.

11.1.1 First-order ODEs

We begin by considering the case when 𝑚 = 1 and so 𝑥 : R → R. We will often suppress the
dependence on 𝑡 , writing 𝑥 (𝑡) as 𝑥 and ¤𝑥 (𝑡) as ¤𝑥 . Even this one-dimensional case may not be
simple to solve.

One family of one-dimensional ODEs we already know how to solve takes the form

¤𝑥 = 𝑓 (𝑡), 𝑥 (0) = 𝑥0

for measurable 𝑓 , which by the fundamental theorem of calculus has the solution 𝑥 (𝑡) = 𝑥0 +∫ 𝑡
0 𝑓 (𝑡)𝑑𝑡 . This is not so exciting, but the logic of this result can be greatly extended.

Separable First-Order ODEs

A related family of nonlinear ODEs that are fairly simple to solve are the so-called separable
first-order ODEs

¤𝑥 = 𝑎(𝑡)𝑃 (𝑥),
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which can be re-organized as
¤𝑥

𝑃 (𝑥) = 𝑎(𝑡) .

Using the fundamental theorem of calculus, we can integrate each side to obtain an implicit
expression for the solution ∫

1
𝑃 (𝑥)𝑑𝑥 =

∫
𝑎(𝑡)𝑑𝑡 +𝐶.

Given a boundary condition, the value of the constant 𝐶 can be identified.

Linear first-order ODEs

We now focus on solving the linear first-order ODE

¤𝑥 (𝑡) = 𝑎(𝑡)𝑥 (𝑡) + 𝑏 (𝑡),

for sufficiently nice 𝑎(𝑡) and 𝑏 (𝑡) (that is, both will need to be integrable, as will some functions of
them). The trick is to reorganize and multiply the equation by an integrating factor 𝑒−

∫
𝑎 (𝑡 )𝑑𝑡 ,

the derivative of which is 𝑎(𝑡)𝑒−
∫
𝑎 (𝑡 )𝑑𝑡 , to obtain

𝑒−
∫
𝑎 (𝑡 )𝑑𝑡 ¤𝑥 (𝑡) − 𝑎(𝑡)𝑒−

∫
𝑎 (𝑡 )𝑑𝑡𝑥 (𝑡) = 𝑒−

∫
𝑎 (𝑡 )𝑑𝑡𝑏 (𝑡),

which may be rewritten as

𝑑

𝑑𝑡

{
𝑒−

∫
𝑎 (𝑡 )𝑑𝑡𝑥 (𝑡)

}
= 𝑒−

∫
𝑎 (𝑡 )𝑑𝑡𝑏 (𝑡) .

Theorem 11.1.4. The solution to the linear first-order ODE ¤𝑥 (𝑡) = 𝑎(𝑡)𝑥 (𝑡) + 𝑏 (𝑡) takes the
form

𝑥 (𝑡) =
[
𝐶 +

∫
𝑒−

∫
𝑎 (𝑡 )𝑑𝑡𝑏 (𝑡)𝑑𝑡

]
𝑒
∫
𝑎 (𝑡 )𝑑𝑡

for some constant 𝐶 pinned down by the initial condition.

You can see that the function 𝑒−
∫
𝑎 (𝑡 )𝑑𝑡 spans the nullspace of the linear first-order ODE operator.

A particularly important one is the constant coefficient homogeneous first-order ODE

¤𝑥 = 𝑎𝑥, 𝑥 (𝑡0) = 𝑥0

which says that the relative rate of growth of 𝑥 is constant. We can rewrite this equation as

𝑑

𝑑𝑡
log(𝑥 (𝑡)) = 𝑎,
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so that 𝑥 (𝑡) = 𝐶𝑒𝑎𝑡 where 𝐶 = 𝑥0𝑒
−𝑎𝑡0 .

Exercise 11.2. Solve the differential equation

𝑑𝑦

𝑑𝑡
+ 𝑡2𝑦 = 5𝑡2, 𝑦 (0) = 6.

11.1.2 First-order ODE Systems

Constant coefficients

We now consider 𝑥 (𝑡) = [𝑥1(𝑡), 𝑥2(𝑡) · · · 𝑥𝑚 (𝑡)]′, and equations of the form

¤𝑥 (𝑡) = 𝐴𝑥 (𝑡), 𝐴 ∈ R𝑚×𝑚, with 𝑥 (𝑡0) = 𝑥0.

Note that if 𝐴 is a diagonal matrix, say, 𝐴 = diag(𝜆1, ..., 𝜆𝑚), then 𝑥𝑖 (𝑡) = 𝑥0𝑒𝜆𝑖 (𝑡−𝑡0 ) , as above.
Now suppose that 𝐴 is diagonalizable, so that 𝐴 = 𝑃Λ𝑃−1. Recall that Λ is then a diagonal

matrix with the𝑚 eigenvalues 𝜆1, 𝜆2, ..., 𝜆𝑚 on the diagonal (repeated as often as their algebraic
multiplicity) and 𝑃 is a matrix with each associated eigenvector 𝑣1, 𝑣2, ..., 𝑣𝑚 . The ODE system can
then be written

¤𝑥 (𝑡) = 𝑃Λ𝑃−1𝑥 (𝑡)

𝑃−1 ¤𝑥 (𝑡) = Λ𝑃−1𝑥 (𝑡)

¤𝑦 (𝑡) = Λ𝑦 (𝑡) .

Then 𝑦𝑖 (𝑡) = 𝐶𝑖𝑒𝜆𝑖𝑡 for some constant 𝐶 . Finally 𝑥 (𝑡) = 𝑃𝑦 (𝑡). This establishes the following.

Theorem 11.1.5. Consider the ODE system ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) for 𝐴 ∈ R𝑚×𝑚 with𝑚 eigenvalues
𝜆1, ..., 𝜆𝑚 and associated distinct eigenvectors 𝑣1, 𝑣2, ..., 𝑣𝑚 . Then

𝑥 (𝑡) =
𝑚∑︁
𝑖=1

𝐶𝑖𝑣𝑖𝑒
𝜆𝑖𝑡 ,

for some 𝐶𝑖 pinned down by the initial conditions 𝑥 (𝑡0) = 𝑥0.

Note that if ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵 for some constant vector 𝐵, then since 𝑥𝑃 (𝑡) = −𝐴−1𝐵 is clearly
a particular solution of the problem, then the general solution takes the form 𝑥 (𝑡) = −𝐴−1𝐵 +∑𝑚
𝑖=1𝐶𝑖𝑣𝑖𝑒

𝜆𝑖𝑡 . The vector 𝑥∗ = −𝐴−1𝐵 is called the stationary state of the system.
If𝐴 is not diagonalizable, recall that an𝑚×𝑚matrix has𝑚 generalized eigenvectors. Using the

Jordan decomposition (and calculating the matrix exponential directly), we obtain the following.
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Theorem 11.1.6. Given a chain of generalized eigenvector of length 𝑟 , let

𝑦1(𝑡) = 𝑣1𝑒
𝜆𝑡

𝑦2(𝑡) = (𝑡𝑣1 + 𝑣2) 𝑒𝜆𝑡

𝑦3(𝑡) =
(
𝑡2

2
𝑣1 + 𝑡𝑣2 + 𝑣3

)
𝑒𝜆𝑡

...

𝑦𝑟 (𝑡) =
(
𝑡𝑟−1

(𝑟 − 1)!𝑣1 + . . . +
𝑡2

2
𝑣𝑟−2 + 𝑡𝑣𝑟−1 + 𝑣𝑟

)
𝑒𝜆𝑡

The functions {𝑦𝑖 (𝑡)}𝑟𝑖=1 form 𝑟 linearly independent solutions of ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡).

Using this foregoing theorem, we can write the general solution to any linear homogeneous
ODE system in the same way as in Theorem 11.1.5, that is, by summing over the linearly
independent basis functions associated with each eigenvalue.

In fact, all these cases may be summarized using the concept of the matrix exponential.

Definition 11.1.7. Let𝐴 ∈ C𝑛×𝑛 . Thematrix exponential of𝐴 is given by the power series

exp(𝐴) =
∞∑︁
𝑘=0

1
𝑘!
𝐴𝑘 .

It turns out that the above series always converges, so that the matrix exponential is well-defined.
The solution to ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) +𝐵 can then be concisely summarized as 𝑥 (𝑡) = 𝑥∗ + exp(𝐴𝑡) [𝑥 (0) −
𝑥∗].

Phase plane diagrams

Wewill now focus on the case in which𝑚 = 2. The phase plane is a convenient way of analyzing
autonomous first-order ODE systems. At point (𝑥,𝑦) in the plane, the value of ( ¤𝑥, ¤𝑦) determines
a direction in which the functions 𝑥 and 𝑦 change as a function of time. A stationary point or
equilibrium is a point at which ¤𝑥 = 0 and ¤𝑦 = 0. A nullcline is the set of points for which ¤𝑥 = 0
or ¤𝑦 = 0.

For concreteness, let us consider the following example.

¤𝑥 = 𝑥 + 3𝑦

¤𝑦 = 𝑥 − 𝑦
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It is clear that the (unique) stationary point of this system is at the origin. The nullclines are the
lines 𝑦 = −1

3 𝑥 and 𝑦 = 𝑥 corresponding to ¤𝑥 = 0 and ¤𝑦 = 0 respectively. You can see a plot of the
phase plane and its nullclines below.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

We can calculate the solution by of the ODE system by calculating the eigenvalues and
eigenvectors of the coefficient matrix. Check that the eigenvalues are 𝜆1 = 2 and 𝜆2 = −1 with
associated eigenvectors 𝑣1 = (3, 1)′ and 𝑣2 = (1,−1)′ respectively.

The eigenvectors are important directions in the phase plane. Recall that 𝑥 = 𝑣𝑖𝑒
𝜆𝑖𝑡 is a

solution to the system ¤𝑥 = 𝐴𝑥 . Thus, the direction of 𝑣𝑖 describes a straight-line trajectory in the
phase plane. Outside of these straight-line trajectories, the solutions are typically curved toward
the eigenvectors (with the dominant eigenvector exerting a greater “pull” than the eigenvector
associated with the smaller eigenvalue).

−0.2 −1 · 10−1 0 0.1 0.2
−0.2

−1 · 10−1

0

0.1

0.2



186 11 Dynamical systems

Analyzing the phase plane, we can see some properties of the solutions to the above
differential equation. Note that the straight-line trajectory associated with the negative root
guides solutions back to the equilibrium point, while the other straight-line trajectory pushes
solutions away from the equilibrium point. In fact, any perturbations away from the negative
root’s straight-line trajectory leads to a solution diverging away from the equilibrium. This form
of solution is called a saddle and the stable line is called the saddle-path.

Generally, we say that this system is unstable, according to the definitions below.

Definition 11.1.8. Let 𝑥 be an isolated steady-state of the system ¤𝑥 (𝑡) = 𝑔(𝑥 (𝑡)), 𝑥 (𝑡) ∈ 𝑋
and 𝑡 ∈ R. Steady-state 𝑥 is Lyapunov stable if given any 𝜀 > 0, there exists 𝛿 = 𝛿 (𝜀) > 0
such that

∥𝑥 (𝑡0) − 𝑥 ∥ < 𝛿 for any 𝑡0 ∈ R implies that ∥𝑥 (𝑡) − 𝑥 ∥ < 𝜀 ∨ 𝑡 ≥ 𝑡0.

A steady-state 𝑥 of the system ¤𝑥 (𝑡) = 𝑔(𝑥 (𝑡) ), 𝑥 (𝑡) ∈ 𝑋 and 𝑡 ∈ R, is globally
asymptotically stable if it is (Lyapunov) stable and, moreover, if for every 𝑡0 ∈ R and
𝑥 (𝑡0) ∈ 𝑋 ,

∥𝑥 (𝑡) − 𝑥 ∥ → 0 as 𝑡 → ∞

A steady-state is locally asymptotically stable if it is (Lyapunov) stable and, moreover,
there exists some 𝛿 > 0 such that

∥𝑥 (𝑡0) − 𝑥 ∥ < 𝛿 for any 𝑡0 ∈ R implies that ∥𝑥 (𝑡) − 𝑥 ∥ → 0 as 𝑡 → ∞

There is a subtle difference between these definitions: a system with solutions which are
closed orbits around the origin (e.g., eccentric circles) is Lyapunov stable but not asymptotically
stable. That is, it doesn’t fly away from the equilibrium point but it doesn’t lead into the
equilibrium either.

What other kinds of systems can we obtain from a first-order ODE system? Recall that

tr(𝐴) = 𝜆1 + 𝜆2

det(𝐴) = 𝜆1𝜆2

where 𝜆1 and 𝜆2 are the eigenvalues, which solve the characteristic quadratic equation

𝑝𝐴 (𝜆) = 𝜆2 − tr(𝐴)𝜆 + det(𝐴) = 0

⇒ 𝜆1,2 =
tr(𝐴) ±

√︁
tr(𝐴)2 − 4 det(𝐴)

2
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det𝐴

Tr𝐴

Δ=0 Δ=0: det𝐴= 1
4 (Tr𝐴)2

saddle

sink source

spiral sink spiral source

center

line of stable fixed points line of unstable fixed points

degenerate sink degenerate source

uniform
motion

Figure 11.1. Poincaré Diagram: Classification of Phase Portraits in the (det𝐴,Tr𝐴)-plane

The value of the discriminant, Δ(𝐴) = tr(𝐴)2 − 4 det(𝐴) determines whether the eigenvalues are
real and distinct Δ(𝐴) > 0, real and repeated Δ(𝐴) = 0 or complex Δ(𝐴) < 0.

It turns out that analysis of the trace and determinant is sufficient to determine the nature and
stability of the ODE system. The full set of possibilities is illustrated in Figure 11.1 below. The
main cases are as follows:

• If det(𝐴) = 𝜆1𝜆2 < 0, the eigenvalues of the system are real numbers of opposite signs; hence,
we have a saddle point. The saddle path (stable subspace), which is a straight line for linear
systems, is determined by the eigenvector associated with the negative (stable) root.

• If det(𝐴) = 𝜆1𝜆2 > 0, the roots are either complex numbers or real numbers of the same sign.
In this case, there are two possibilities

– If tr(𝐴) = 𝜆1 + 𝜆2 < 0, the two eigenvalues are negative (if real) or have negative real
parts; in either case, the system is stable. The steady-state is a sink .

– If tr(𝐴) = 𝜆1 + 𝜆2 > 0, both roots are positive (if real) or have positive real parts; in both
cases the system is unstable. The steady-state is a source.
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Exercise 11.3. Consider the system

¤𝑥 = −5𝑥 − 2𝑦,

¤𝑦 = −𝑥 − 4𝑦.

Find the general solution and sketch the phase portrait. Is the steady-state solution stable or
unstable?

Higher-order linear ODEs

Recall that 𝑛-th order ODEs may be rewritten as 𝑛-dimensional systems of ODEs. This suggests
that ODEs of the form

𝑦 (𝑛) + 𝑎𝑛−1𝑦
(𝑛−1) + 𝑎𝑛−2𝑦

(𝑛−2) + ... + 𝑎1𝑦
′ + 𝑎0𝑦 = 0

may be solved using the constant-coefficient results above. This approach does work out, but it is
in fact easier to use a short-cut motivated by the results obtained above. To do so, substitute the
equation 𝑦 = 𝑒𝜆𝑡 into the ODE, to obtain the equation

𝜆𝑛𝑒𝜆𝑡 + +𝑎𝑛−1𝜆
(𝑛−1)𝑒𝜆𝑡 + 𝑎𝑛−2𝜆

(𝑛−2)𝑒𝜆𝑡 + ... + 𝑎1𝜆𝑒
𝜆𝑡 + 𝑎0𝑒

𝜆𝑡 = 0,

which may be simplified, since 𝑒𝜆𝑡 ≠ 0 to

𝜆𝑛 + +𝑎𝑛−1𝜆
(𝑛−1) + 𝑎𝑛−2𝜆

(𝑛−2) + ... + 𝑎1𝜆 + 𝑎0 = 0,

which is a polynomial in 𝜆. It turns out this polynomial is just the characteristic equation of the
equivalent ODE system, so that the “characteristic roots” 𝜆𝑖 are the eigenvalues of said system. If
there are 𝑛 distinct characteristic roots, the solution takes the form

𝑦 (𝑡) =
𝑛∑︁
𝑖=1

𝑐𝑖𝑒
𝜆𝑖𝑡 ,

for some coefficients determined by the initial conditions. If there is a repeated root, then it turns
out that multiplying the proposed solution by 𝑡 leads to another linearly independent solution
to the homogeneous equation (if the root is repeated more times, multiplying again by 𝑡 leads to
another linearly independent solution of the equation and so on).

In some cases it is also possible to find closed-form solutions to non-homogeneous higher-
order ODEs,

𝑦 (𝑛) + 𝑎𝑛−1𝑦
(𝑛−1) + 𝑎𝑛−2𝑦

(𝑛−2) + ... + 𝑎1𝑦
′ + 𝑎0𝑦 = 𝑏 (𝑡) .



11.1 Continuous dynamical systems: differential equations 189

In order to do so, start by identifying the homogeneous solutions of the ODE, as described above.
Then, it suffices to find a particular solution of the non-homogeneous equation. Start by guessing
particular solutions of the “same form” as the right-hand side function 𝑏 (𝑡). That is, if 𝑏 (𝑡) is an
𝑘-th order polynomial in 𝑡 , guess a generic 𝑘th-order polynomial in 𝑡 as the particular solution
and try to identify coefficients of such a polynomial which satisfy the equation. Similarly, if the
right-hand side is an exponential, guess a similar exponential and so on. This method, called
“undetermined coefficients” works in many cases for such equations.

Exercise 11.4. Find the general solution to the differential equation

𝑦′′ − 6𝑦′ + 2𝑦 = 𝑡 .

11.1.3 Autonomous nonlinear systems

Many ODE systems of interest in economics are nonlinear. However, as foreshadowed earlier,
such systems may typically be studied by taking local linearizations. We now briefly discuss the
theory underlying this approach.

Definition 11.1.9. A steady-state 𝑥∗ of ¤𝑥 = 𝐹 (𝑥 (𝑡)) (where 𝐹 is continuously differentiable)
is hyperbolic if 𝐷𝐹 (𝑥∗) has full rank.

It turns out if the steady-state is hyperbolic, then the system “behaves locally like” the linear
system with coefficient matrix 𝐷𝐹 (𝑥∗). By “behaves like” we mean the following.

Definition 11.1.10. A homeomorphism 𝑓 : 𝑈 → 𝑉 between metric spaces 𝑈 and 𝑉 is a
continuous function with a continuous inverse.

Theorem 11.1.11 (Hartman-Grobman Theorem). Let 𝑥∗ be a hyperbolic steady-state of ¤𝑥 =

𝐹 (𝑥 (𝑡)) where 𝐹 is continuously differentiable. Then there exists a neighborhood of 𝑥∗ in which
the solutions of ¤𝑥 = 𝐹 (𝑥 (𝑡)) are equivalent up to “direction-preserving” homeomorphism to
¤𝑥 = 𝐷𝑓 (𝑥∗) (𝑥 (𝑡) − 𝑥∗).

Here, ‘direction-preserving’ means it preserves the (time-)direction of trajectories in the phase
plane (it is a hassle to define this technically, even though it is simple enough to understand
intuitively).

The previous theorem implies that if 𝐷𝑓 (𝑥∗) has no zero eigenvalues, then the local behavior
of the system around 𝑥∗ can be fully determined by analysis of the eigenvalues (as in Figure 11.1).
For example, if all the eigenvalues have negative real parts, 𝑥∗ is locally asymptotically stable,
while if any eigenvalue has a positive real part, 𝑥∗ is Lyapunov unstable.
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Exercise 11.5. Consider the growth model

¤𝑘 (𝑡) = 𝑓 (𝑘 (𝑡)) − 𝑐 (𝑡) − 𝛿𝑘 (𝑡)

¤𝑐 (𝑡) = [𝑓 ′(𝑘 (𝑡)) − (𝛿 + 𝜌)]𝑐 (𝑡),

where 𝜌 > 0, 𝛿 ∈ (0, 1) are parameters, 𝑘 (𝑡) is the capital stock and the production function 𝑓
satisfies

𝑓 (0) = 0, 𝑓 ′ > 0, 𝑓 ′′ < 0, lim
𝑘→∞

𝑓 ′(𝑘) = 0, lim
𝑘↓0

𝑓 ′(𝑘) = ∞.

Identify the steady-state of the system and describe the system’s behavior locally around the
steady-state. Sketch the phase portrait.

11.2 Discrete dynamical systems: difference equations

We now consider equations of the form

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝑡),

where 𝑡 ∈ Z. It turns out the behavior of such systems tends to be very similar to that of differential
equations, with a few adjustments.

The simplest difference equation is the autonomous linear first-order differencee equation

𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡) + 𝑏, 𝑥 (0) = 𝑥0.

To solve this system, we can repeatedly substitute into the equation, as

𝑥 (1) = 𝑎𝑥0 + 𝑏

𝑥 (2) = 𝑎2𝑥0 + 𝑎𝑏 + 𝑏
...

𝑥 (𝑡) =

𝑥0 + 𝑏𝑡 if 𝑎 = 1
𝑏

1−𝑎 + 𝑎
𝑡
(
𝑥0 − 𝑏

1−𝑎

)
if 𝑎 ≠ 1.
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Exercise 11.6. Prove the above formula for 𝑥 (𝑡) using induction.

Note the similarity to the solution of the ODE ¤𝑥 = 𝑎𝑥 + 𝑏, which is 𝑥 = −𝑏
𝑎

+
(
𝑥0 + 𝑏

𝑎

)
𝑒𝑎𝑡 . The

solution to the difference equation is asymptotically stable (around 𝑏
1−𝑎 ) if and only if |𝑎 | < 1.

Analogies of the solution methods for first-order ODE systems apply to difference equations.
We state these results without proof.

Theorem 11.2.1. The vector difference equation

𝑥 (𝑡 + 1) = 𝐹 (𝑥 (𝑡), 𝑡), 𝑥 (𝑡0) = 𝑥0

where 𝑥 : Z→ R𝑚 and 𝐹 : R𝑚 × Z→ R𝑚 has a unique solution for all 𝑡 ≥ 𝑡0 and as long as 𝐹
is a invertible function, the solution is unique for all 𝑡 ∈ Z.

Theorem 11.2.2. Suppose 𝐴 ∈ R𝑚×𝑚 with distinct eigenvalues 𝜆1, ..., 𝜆𝑛 , each with modulus
not equal to 1. Then the unique solution to

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝑏, 𝑥 (0) = 𝑥0,

takes the form

𝑥 (𝑡) = −[𝐴 − 𝐼𝑛]−1𝑏 +
𝑛∑︁
𝑖=1

𝑐𝑖𝜆
𝑡
𝑖 𝑣𝑖 ,

where 𝑣𝑖 is the eigenvector associated with eigenvalue 𝜆𝑖 and 𝑐𝑖 is a constant determined by the
initial condition.
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In this section, we introduce the optimal control problem. In the typical optimal control, the
decision-maker obtains flow payoffs from the value of some variable (the “state variable”) over
time but can also make choices of another variable (the “control variable”) that influence the rate
of growth of the state variable. We distinguish between the finite and infinite horizon cases. While
the results for the two cases are very similar, proofs for infinite horizon are substantially more
difficult. Since the finite horizon proofs contain all the important intuition, these will be presented
in these notes. The proofs of the other statements can be found in the book "Introduction to
Modern Economic Growth" by Acemoglu.

12.1 Finite horizon

Definition 12.1.1. The finite-horizon optimal control problem takes the form:

max
𝑥 (𝑡 ),𝑦 (𝑡 )

𝑊 (𝑥 (𝑡), 𝑦 (𝑡)) ≡
∫ 𝑡1

0
𝑓 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡))𝑑𝑡

subject to
¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)), and

𝑥 (𝑡) ∈ X, 𝑦 (𝑡) ∈ Y for all 𝑡, and 𝑥 (0) = 𝑥0,

where 𝑡1 ∈ R+,X and, Y are nonempty convex subsets of R.
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Variable 𝑥 is referred to as the state variable and 𝑦 as the control variable. A pair of
functions that jointly satisfy ¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)) 𝑥 (𝑡) ∈ X, 𝑦 (𝑡) ∈ Y for all 𝑡, 𝑥 (0) = 𝑥0 are
referred to as an admissible pair.

There are two challenges in characterizing the solution to this problem that we did not have
before:

• The choice variable 𝑦 is a function rather than a vector or a finite dimensional object.

• The constraint takes the form of a differential equation.

Here is the result that establishes necessary conditions for any continuous interior solution:

Theorem 12.1.2 (Pontryagin’s maximum principle). Consider the problem of maximizing (1)
subject to (2) and (3), with 𝑓 and 𝑔 continuously differentiable. Suppose that this problem has
an continuous interior solution (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y). Then there exists a continuously
differentiable function 𝜆(·) defined on 𝑡 ∈ [0, 𝑡1], such that (𝑥 (𝑡), 𝑦 (𝑡)) satisfy the following
necessary conditions:

0 = 𝐻𝑦 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) for all 𝑡 ∈ [0, 𝑡1]
¤𝜆(𝑡) = −𝐻𝑥 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) for all 𝑡 ∈ [0, 𝑡1]

¤𝑥 (𝑡) = 𝐻𝜆 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡) for all 𝑡 ∈ [0, 𝑡1]

𝜆 (𝑡1) = 0

𝑥 (0) = 𝑥0

where the Hamiltonian 𝐻 (𝑡, 𝑥,𝑦, 𝜆) is defined as

𝐻 (𝑡, 𝑥,𝑦, 𝜆) = 𝑓 (𝑡, 𝑥,𝑦) + 𝜆(𝑡)𝑔(𝑡, 𝑥,𝑦)

Moreover, the Hamiltonian 𝐻 (𝑡, 𝑥,𝑦, 𝜆) satisfies the Maximum Principle

𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) ≥ 𝐻 (𝑡, 𝑥 (𝑡), 𝑦, 𝜆(𝑡)) for all 𝑦 (𝑡) ∈ Y and 𝑡 ∈ [0, 𝑡1]

We will give an intuitive (but not completely formal) proof of this result using the method
of Lagrange multipliers we developed for the static optimization case. Let 𝜆(𝑡) be the Lagrange
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multiplier on the constraint ¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)). The Lagrangian is∫
𝑓 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡))𝑑𝑡 +

∫
𝜆(𝑡) [𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)) − ¤𝑥 (𝑡)]𝑑𝑡

=

∫
𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡))𝑑𝑡 −

∫
𝜆(𝑡) ¤𝑥 (𝑡)𝑑𝑡

=

∫
𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡))𝑑𝑡 − 𝜆(𝑡)𝑥 (𝑡) |𝑡10 +

∫
𝑥 (𝑡) ¤𝜆(𝑡)𝑑𝑡

=

∫ [
𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) + 𝑥 (𝑡) ¤𝜆(𝑡)

]
𝑑𝑡 − 𝜆(𝑡1)𝑥 (𝑡1) + 𝜆(0)𝑥0.

We maximize the integrand pointwise with respect to 𝑥 (𝑡) and 𝑦 (𝑡). The former gives the
equation

−𝐻𝑥 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) = ¤𝜆(𝑡)

while the latter gives the equation

𝐻𝑦 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) = 0.

Interpreting the necessary conditions

Before discussing the proof of the above theorem, let us discuss the necessary conditions. The
first necessary condition 𝐻𝑦 = 0 is just the first-order conditions of the “unconstrained” problem
in 𝑦. The third necessary condition ¤𝑥 = 𝐻𝜆 is simply a restatement of the constraint that ¤𝑥 =

𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)).
The second necessary condition is more subtle. The function 𝜆(𝑡) is called the co-state

variable. From the envelope theorem, we can see that

𝜆(𝑡) = 𝜕𝑊 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡))
𝜕𝑥

,

so that the co-state variable is the shadow value of relaxing the constraint that
¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)). Thus, the Hamiltonian and the maximal principle may be interpreted as
maximizing the sum of the immediate payoff from 𝑥,𝑦, which is 𝑓 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡)) plus the value of
future gains that accrue from investing in future changes in the sock of the state variable. The
second necessary condition then represents a kind of “no-arbitrage” condition for the variable
𝑥 (𝑡). Imagine that you have 𝑥 (𝑡) at time 𝑡 and consider purchasing 𝛿𝑥 more 𝑥 . The cost of this
purchase will be 𝜆(𝑡)𝛿𝑥 , while the benefit is the 𝐻𝑥𝛿𝑥𝛿𝑡 that you gain over the coming instant 𝛿𝑡
plus the value of the additional 𝑥 you hold at time 𝑡 + 𝛿𝑡 which is 𝜆(𝑡 + 𝛿𝑡)𝛿𝑥 . In order for your
choice of 𝑥 to be optimal, it must be that these costs and benefits equalize, that is
𝐻𝑥𝛿𝑡𝛿𝑥 + 𝜆(𝑡 + 𝛿𝑡)𝛿𝑥 = 𝜆(𝑡)𝛿𝑥 . Letting 𝛿𝑡 → 0, this implies that 𝐻𝑥 + ¤𝜆(𝑡) = 0.
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Sufficient conditions

The necessary conditions give us candidate solutions for the problem, but checking that a given
candidate is a maximizer can be hard. The following sufficient conditions often help.

Theorem 12.1.3 (Mangasarian’s Sufficiency Conditions). Let 𝑓 and 𝑔 be continuously
differentiable, and suppose that an interior continuous path (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y) exists
and satisfies the necessary conditions. Suppose that X × Y is a convex set and given the
resulting 𝜆(𝑡), 𝐻 (𝑡, 𝑥,𝑦, 𝜆) is jointly concave in (𝑥,𝑦) ∈ X × Y for all 𝑡 ∈ [0, 𝑡1]. Then the pair
(𝑥 (𝑡), 𝑦 (𝑡)) is a global maximizer.

Moreover, if 𝐻 (𝑡, 𝑥,𝑦, 𝜆) is strictly concave in (𝑥,𝑦) ∈ X ×Y for all 𝑡 ∈ [0, 𝑡1], then the pair
(𝑥 (𝑡), 𝑦 (𝑡)) is the unique solution.

Another version of more general sufficient conditions, is given in the following theorem.

Theorem 12.1.4 (Arrow’s Sufficiency Conditions). Let 𝑓 and 𝑔 be continuously differentiable,
and suppose that an interior continuous path (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y) exists and satisfies the
necessary conditions. Given 𝜆(𝑡), let

𝑀 (𝑡, 𝑥 (𝑡), 𝜆(𝑡)) ≡ max
𝑦∈Y

𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡))

IfX is convex and𝑀 (𝑡, 𝑥, 𝜆) is concave in 𝑥 ∈ X for every 𝑡 ∈ [0, 𝑡1], then (𝑥 (𝑡), 𝑦 (𝑡)) are global
maximizers. Moreover, if 𝑀 (𝑡, 𝑥, 𝜆) is strictly concave in (𝑥,𝑦) ∈ X × Y for all 𝑡 ∈ [0, 𝑡1], then
the pair (𝑥 (𝑡), 𝑦 (𝑡)) are unique solutions.

12.2 Infinite horizon

In this section, wewill consider two forms of problemswith infinite horizon, one with discounting
and one without. In infinite horizon problems, we will need to be concerned with the behavior
of candidate solutions as 𝑡 → ∞. Frankly, the setup with discounting is much more important
in your first-year classes (and probably economics more generally), but I have included both for
completeness.

No discounting
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Definition 12.2.1. The infinite-horizonno-discounting optimal control problem takes
the form

max
𝑥 (𝑡 ),𝑦 (𝑡 )

𝑊 (𝑥 (𝑡), 𝑦 (𝑡)) ≡
∫ 𝑡1

0
𝑓 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡))𝑑𝑡

subject to
¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)), and

𝑥 (𝑡) ∈ X, 𝑦 (𝑡) ∈ Y for all 𝑡, and 𝑥 (0) = 𝑥0 and lim
𝑡→∞

𝑏 (𝑡)𝑥 (𝑡) ≥ 𝑥1,

where 𝑡1 ∈ R+; X and Y are nonempty convex subsets of R; and 𝑏 : R+ → R+is a function
for which lim𝑡→∞ 𝑏 (𝑡) exists and satisfies lim𝑡→∞ 𝑏 (𝑡) < ∞.

This new requirement on the limiting behavior of 𝑥 is a form of feasibility condition (do not
confuse it with a tranversality condition!). In economic problems, it often takes the form of a “no-
Ponzi” condition. It represents the goal of identifying candidate solutions which do not wander
off to −∞ (typically, we do not consider such solutions as being economically meaningful).

Here is the result that establishes necessary conditions for any continuous interior solution

Theorem 12.2.2. Suppose that the no-discounting optimal control problem has a piecewise
continuous interior solution (𝑥 (𝑡), 𝑦 (𝑡)). Define𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) as in Theorem 12.1.2. Then
𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) must satisfy all the same conditions as in Theorem 12.1.2 as well as the
feasibility condition lim𝑡→∞ 𝑏 (𝑡)𝑥 (𝑡) ≥ 𝑥1. Moreover, as long as𝑊 (𝑡, 𝑥 (𝑡)) is differentiable in 𝑥
and 𝑡 for 𝑡 sufficiently large and lim𝑡→∞𝑉𝑡 (𝑡, 𝑥 (𝑡)) = 0, then the pair (𝑥 (𝑡), 𝑦 (𝑡)) also satisfies
the transversality condition

lim
𝑡→∞

𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡)) = 0.

The transversality condition is a necessary condition for an optimal policy to exist (which is
necessary for any reasonable concept of equilibrium).

Sufficiency conditions are similar to before.

Theorem 12.2.3. Suppose that an admissible pair (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y) satisfies the
necessary conditions above. Given 𝜆(𝑡), let

𝑀 (𝑡, 𝑥 (𝑡), 𝜆(𝑡)) ≡ max
𝑦∈Y

𝐻 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜆(𝑡))

If X is convex and 𝑀 (𝑡, 𝑥, 𝜆) is concave in 𝑥 ∈ X for every 𝑡 ∈ R+and lim𝑡→∞ 𝜆(𝑡) (𝑥 (𝑡)−
𝑥 (𝑡)) ≤ 0 for all 𝑥 (𝑡) implied by an admissible control path 𝑦 (𝑡), then (𝑥 (𝑡), 𝑦 (𝑡)) achieves the
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global maximum of the optimal control problem. Moreover, if 𝑀 (𝑡, 𝑥, 𝜆) is strictly concave in
(𝑥,𝑦) ∈ X × Y for all 𝑡 ∈ [0, 𝑡1], then the pair (𝑥 (𝑡), 𝑦 (𝑡)) is the unique solution.

12.3 Discounted infinite horizon

This is the most common form of optimal control problem that you will encounter in the first-year
coursework.

Definition 12.3.1. The infinite-horizon optimal control problem with discounting
takes the form

max
𝑥 (𝑡 ),𝑦 (𝑡 )

𝑊 (𝑥 (𝑡), 𝑦 (𝑡)) ≡
∫ 𝑡1

0
𝑒−𝜌𝑡 𝑓 (𝑥 (𝑡), 𝑦 (𝑡))𝑑𝑡

subject to
¤𝑥 (𝑡) = 𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡)), and

𝑥 (𝑡) ∈ X, 𝑦 (𝑡) ∈ Y for all 𝑡, and 𝑥 (0) = 𝑥0 and lim
𝑡→∞

𝑏 (𝑡)𝑥 (𝑡) ≥ 𝑥1,

where 𝑡1 ∈ R+; X and Y are nonempty convex subsets of R; and 𝑏 : R+ → R+is a function
for which lim𝑡→∞ 𝑏 (𝑡) exists and satisfies lim𝑡→∞ 𝑏 (𝑡) < ∞.

In comparison to the previous section, this only difference is that the more general time
dependence of the objective function 𝑓 in the previous section, is restricted in this section only
through the time discount 𝑒−𝜌𝑡 .

In addition, we will make use of the following assumptions:

(a) 𝑓 is weakly monotone in 𝑥 and 𝑦, and 𝑔 is weakly monotone in (𝑡, 𝑥,𝑦);

(b) there exists 𝑚 > 0 such that
��𝑔𝑦 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡))�� ≥ 𝑚 for all 𝑡 and for all admissible pairs

(𝑥 (𝑡), 𝑦 (𝑡)); and

(c) there exists𝑀 < ∞ such that
��𝑓𝑦 (𝑥,𝑦)�� ≤ 𝑀 for all 𝑥 and 𝑦.

Instead of working with the usual Hamiltonian, it proves simpler to work with the current
value Hamiltonian defined as follows:

�̂� (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡)) ≡ 𝑓 (𝑥 (𝑡), 𝑦 (𝑡)) + 𝜇 (𝑡)𝑔(𝑡, 𝑥 (𝑡), 𝑦 (𝑡))
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Theorem 12.3.2 (Maximum principle for Discounted Infinite-Horizon Problem). Consider
the discounted optimal control problem, with 𝑓 and 𝑔 continuously differentiable. Suppose that
this problem has a piecewise continuous interior solution (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y). Let
𝑉 (𝑡, 𝑥 (𝑡)) be the value function defined as:

𝑉 (𝑡, 𝑥 (𝑡)) = sup
(𝑥 (𝑠 ),𝑦 (𝑠 ) ) ∈X×𝑦

∫ ∞

𝑡

𝑒−𝜌𝑠 𝑓 (𝑥 (𝑠), 𝑦 (𝑠))𝑑𝑠

subject to ¤𝑥 (𝑠) = 𝑔(𝑠, 𝑥 (𝑠), 𝑦 (𝑠)) and lim𝑠→∞ 𝑏 (𝑠)𝑥 (𝑠) ≥ 𝑥1 Suppose that 𝑉 (𝑡, 𝑥 (𝑡)) is
differentiable in 𝑥 and 𝑡 for 𝑡 sufficiently large, that 𝑉 (𝑡, 𝑥 (𝑡)) exists and is finite for all 𝑡 and
that lim𝑡→∞

𝜃𝑉 (𝑡,𝑥 (𝑡 ) )
𝜕𝑡

= 0.
Then there exists a continuously differentiable function 𝜇 (·) defined on 𝑡 ∈ R+, such that

(𝑥 (𝑡), 𝑦 (𝑡)) satisfy the following necessary conditions:

�̂�𝑦 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡)) = 0 for all 𝑡 ∈ R+
�̂�𝑥 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡)) = 𝜌𝜇 (𝑡) − ¤𝜇 (𝑡) for all 𝑡 ∈ R+
�̂�𝜇 (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡)) = ¤𝑥 (𝑡) for all 𝑡 ∈ R+
𝑥 (0) = 𝑥0

lim𝑡→∞ 𝑏 (𝑡)𝑥 (𝑡) ≥ 𝑥1

and the transversality condition

lim
𝑡→∞

𝑒−𝜇𝑡�̂� (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡)) = 0

Moreover, suppose that Assumption 1.8 holds and that either lim𝑡→∞ 𝑥 (𝑡) = 𝑥∗ ∈ R or 9
lim𝑡→∞

¤𝑥 (𝑡 )
𝑥 (𝑡 ) = 𝜉 ∈ R. Then the transversality condition can be strengthened to

lim
𝑡→∞

𝑒−𝜌𝑡𝜇 (𝑡)𝑥 (𝑡) = 0.

The following theorem comprises the sufficient conditions.

Theorem 12.3.3. Suppose that an admissible pair (𝑥 (𝑡), 𝑦 (𝑡)) ∈ Int(X × Y) satisfies the
necessary conditions above. Given 𝜇 (𝑡), let

𝑀 (𝑡, 𝑥 (𝑡), 𝜇 (𝑡)) ≡ max
𝑦∈Y

�̂� (𝑡, 𝑥 (𝑡), 𝑦 (𝑡), 𝜇 (𝑡))

Suppose that 𝑉 (𝑡, 𝑥 (𝑡)) exists and is finite for all 𝑡 , that for any admissible pair (𝑥 (𝑡), 𝑦 (𝑡)),
lim𝑡→∞ 𝑒−𝜌𝑡𝜇 (𝑡)𝑥 (𝑡) ≥ 0 and that X is convex and 𝑀 (𝑡, 𝑥, 𝜆) is concave in 𝑥 ∈ X for every 𝑡 ∈
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R+, then (𝑥 (𝑡), 𝑦 (𝑡)) achieves the global maximum). Moreover, if 𝑀 (𝑡, 𝑥, 𝜆) is strictly concave
in (𝑥,𝑦) ∈ X × Y for all 𝑡 ∈ [0, 𝑡1], then the pair (𝑥 (𝑡), 𝑦 (𝑡)) is the unique solution.

The above theorems are very useful and powerful. Given these theorems, the following
strategy is used to solve problems of the discounted infinite-horizon form:

1. Use the necessary conditions to locate a candidate interior solution.

2. Verify the concavity condition in the sufficient conditions and simply check that
lim𝑡→∞ 𝑒−𝜌𝑡𝜇 (𝑡)𝑥 (𝑡) ≥ 0 for other admissible pairs.

If these conditions are satisfied, we will have characterized a global maximum.

Exercise 12.1. Suppose that an agent has access to a single unit of a resource and is determining
its optimal consumption plan for the resource. The stock of the resource at time 𝑡 is 𝑥 (𝑡), while
the flow payoff from consumption 𝑐 (𝑡) is 𝑢 (𝑐 (𝑡)). The agent, who discounts the future with rate
𝜌 > 0 solves

max
𝑥 (𝑡 ),𝑐 (𝑡 )

∫ ∞

0
𝑒−𝜌𝑡𝑢 (𝑐 (𝑡))𝑑𝑡,

subject to ¤𝑥 (𝑡) = −𝑐 (𝑡), with 𝑥 (𝑡) ∈ [0, 1] given 𝑥 (0) = 1. Identify the optimal consumption
rule and the resulting 𝑥 (𝑡).

Exercise 12.2. Consider the following neoclassical growthmodel. Maximize the social planner’s
utility (the utility of a representative household):

max[𝑘 (𝑡), 𝑐 (𝑡)]∞𝑡=0

∫ ∞

0
𝑒−𝜌𝑡 ln(𝑐 (𝑡))𝑑𝑡

subject to the law of motion of capital ¤𝑘 (𝑡) = 𝑘 (𝑡)𝛼 − 𝛿𝑘 (𝑡) − 𝑐 (𝑡) and 𝑘 (0) > 0 where 𝛼, 𝛿 ∈
(0, 1), 𝜌 > 0.

Characterize the necessary conditions for optimality for 𝑐 (𝑡) and 𝑘 (𝑡).
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